Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Curr Biol ; 17(16): 1432-7, 2007 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-17689960

RESUMEN

The detection of a DNA double-strand break (DSB) is necessary to initiate DSB repair. Several proteins, including the MRX/N complex, Tel1/ATM (ataxia telangiectasia mutated), and Mec1/ATR (ATM and Rad3 related), have been proposed as sensors of DNA damage, yet how they recognize the breaks is poorly understood. DSBs occur in the context of chromatin, implicating factors capable of altering local and/or global chromatin structure in the cellular response to DNA damage, including DSB sensing. Emerging evidence indicates that ATP-dependent chromatin-remodeling complexes function in DNA repair. Here we describe an important and novel early role for the RSC ATP-dependent chromatin remodeler linked to DSB sensing in the cell's DNA-damage response. RSC is required for full levels of H2A phosphorylation because it facilitates the recruitment of Tel1/ATM and Mec1/ATR to the break site. Consistent with these results, we also show that Rsc2 is needed for efficient activation of the Rad53-dependent checkpoint, as well as for Cohesin's association with the break site. Finally, Rsc2 is needed for the DNA-damage-induced changes in nucleosome structure surrounding the DSB site. Together, these new findings functionally link RSC to DSB sensing, highlighting the importance of ATP-dependent chromatin-remodeling factors in the cell's early response to DNA damage.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Cohesinas
2.
Mol Cell Biol ; 23(9): 3202-15, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12697820

RESUMEN

The accurate segregation of chromosomes requires the kinetochore, a complex protein machine that assembles onto centromeric DNA to mediate attachment of replicated sister chromatids to the mitotic spindle apparatus. This study reveals an important role for the yeast RSC ATP-dependent chromatin-remodeling complex at the kinetochore in chromosome transmission. Mutations in genes encoding two core subunits of RSC, the ATPase Sth1p and the Snf5p homolog Sfh1p, interact genetically with mutations in genes encoding kinetochore proteins and with a mutation in centromeric DNA. RSC also interacts genetically and physically with the histone and histone variant components of centromeric chromatin. Importantly, RSC is localized to centromeric and centromere-proximal chromosomal regions, and its association with these loci is dependent on Sth1p. Both sth1 and sfh1 mutants exhibit altered centromeric and centromere-proximal chromatin structure and increased missegregation of authentic chromosomes. Finally, RSC is not required for centromeric deposition of the histone H3 variant Cse4p, suggesting that RSC plays a role in reconfiguring centromeric and flanking nucleosomes following Cse4p recruitment for proper chromosome transmission.


Asunto(s)
Cromatina/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Cinetocoros/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/química , Centrómero/fisiología , Cromatina/genética , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN/genética , Histonas/genética , Sustancias Macromoleculares , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transferencia de Fosfolípidos , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático , Factores de Transcripción/genética
3.
J Mol Histol ; 37(5-7): 261-9, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17120107

RESUMEN

Eukaryotic cells have developed conserved mechanisms to efficiently sense and repair DNA damage that results from constant chromosomal lesions. DNA repair has to proceed in the context of chromatin, and both histone-modifiers and ATP-dependent chromatin remodelers have been implicated in this process. Here, we review the current understanding and new hypotheses on how different chromatin-modifying activities function in DNA repair in yeast and metazoan cells.


Asunto(s)
Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , Reparación del ADN , Adenosina Trifosfato/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Humanos , Modelos Genéticos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Cohesinas
4.
Genetics ; 161(2): 575-84, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12072455

RESUMEN

RSC is a 15-protein ATP-dependent chromatin-remodeling complex related to Snf-Swi, the prototypical ATP-dependent nucleosome remodeler in budding yeast. Despite insight into the mechanism by which purified RSC remodels nucleosomes, little is known about the chromosomal targets or cellular pathways in which RSC acts. To better understand the cellular function of RSC, a screen was undertaken for gene dosage suppressors of sth1-3ts, a temperature-sensitive mutation in STH1, which encodes the essential ATPase subunit. Slg1p and Mid2p, two type I transmembrane stress sensors of cell wall integrity that function upstream of protein kinase C (Pkc1p), were identified as multicopy suppressors of sth1-3ts cells. Although the sth1-3ts mutant exhibits defects characteristic of PKC1 pathway mutants (caffeine and staurosporine sensitivities and an osmoremedial phenotype), only upstream components and not downstream effectors of the PKC1-MAP kinase pathway can suppress defects conferred by sth1-3ts, suggesting that RSC functions in an alternative PKC1-dependent pathway. Moreover, sth1-3ts cells display defects in actin cytoskeletal rearrangements and are hypersensitive to the microtubule depolymerizing drug, TBZ; both of these defects can be corrected by the high-copy suppressors. Together, these data reveal an important functional connection between the RSC remodeler and PKC1-dependent signaling in regulating the cellular architecture.


Asunto(s)
Proteínas de Ciclo Celular , Citoesqueleto/metabolismo , Proteínas de Unión al ADN/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Nucleares , Proteína Quinasa C/metabolismo , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/fisiología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activadores de Enzimas/metabolismo , Calor , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Proteína Quinasa C/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiabendazol/antagonistas & inhibidores , Tiabendazol/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Cell Cycle ; 4(12): 1713-5, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16294042

RESUMEN

The genomic integrity of a eukaryotic cell is challenged by over 10,000 chromosomal lesions per day. Therefore the cell has evolved efficient mechanisms to recognize, signal, and repair DNA breaks. Defects in any of these steps can lead to chromosomal aberrations and cancers. As these lesions must be repaired in the context of chromatin, both chromatin-modifying and nucleosome-remodeling enzymes have been implicated in DNA damage repair. We reported recently that the RSC and Swi/Snf ATP-dependent chromatin-remodeling complexes are involved in DSB repair specifically by homologous recombination. Here we discuss how such enzymes might be recruited to DNA breaks, why so many remodelers are recruited to sites of DSBs, and a possible functional connection between RSC's roles in sister chromatid cohesion and DSB repair.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Emparejamiento Cromosómico , Daño del ADN , Reparación del ADN , Animales , Cromatina/genética , Complejos Multiproteicos/metabolismo
6.
Genes Dev ; 19(14): 1656-61, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16024655

RESUMEN

The failure of cells to repair damaged DNA can result in genomic instability and cancer. To efficiently repair chromosomal DNA lesions, the repair machinery must gain access to the damaged DNA in the context of chromatin. Here we report that both the RSC and Swi/Snf ATP-dependent chromatin-remodeling complexes play key roles in double-strand break (DSB) repair, specifically by homologous recombination (HR). RSC and Swi/Snf are each recruited to an in vivo DSB site but with distinct kinetics. We show that Swi/Snf is required earlier, at or preceding the strand invasion step of HR, while RSC is required following synapsis for completion of the recombinational repair event.


Asunto(s)
Ensamble y Desensamble de Cromatina , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adenosina Trifosfato/metabolismo , Genes Fúngicos , Cinética , Mutación , Recombinación Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Temperatura
7.
EMBO J ; 23(1): 127-37, 2004 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-14685262

RESUMEN

Eucaryotic gene expression requires chromatin-remodeling activities. We show by time-course studies that transcriptional induction of the yeast glucose-regulated SUC2 gene is rapid and shows a striking biphasic pattern, the first phase of which is partly mediated by the general stress transcription factors Msn2p/Msn4p. The SWI/SNF ATP-dependent chromatin-remodeling complex associates with the promoter in a similar biphasic manner and is essential for both phases of transcription. Two different histone acetyltransferases, Gcn5p and Esa1p, enhance the binding of SWI/SNF to the promoter during early transcription and are required for optimal SUC2 induction. Gcn5p is recruited to SUC2 simultaneously with SWI/SNF, whereas Esa1p associates constitutively with the promoter. This study reveals an unusual transcription pattern of a metabolic gene and suggests a novel strategy by which distinct chromatin remodelers cooperate for the dynamic activation of transcription.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Acetiltransferasas/genética , Adenosina Trifosfato/metabolismo , Cromatina/metabolismo , Fase G1 , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Histona Acetiltransferasas , Cinética , Reacción en Cadena de la Polimerasa , Pruebas de Precipitina , Regiones Promotoras Genéticas , ARN Mensajero/análisis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Activación Transcripcional , beta-Fructofuranosidasa/biosíntesis , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/genética
8.
Cell Cycle ; 3(8): 973-5, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15254404

RESUMEN

The precise segregation of chromosomes is critical for the proliferation and development of living organisms. Defects in this process can result in tumorigenesis and hereditary diseases. The four-subunit cohesin complex plays an essential role in chromosome segregation and genome integrity. Recently, we reported that the association of cohesin with centromeres and chromosome arms is differentially regulated by the ATP-dependent RSC chromatin-remodeling complex. Here, we propose two models to explain why the cell should have evolved special mechanisms for centromeric and sister arm cohesion and why RSC differentially regulates these processes.


Asunto(s)
Cromátides/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Intercambio de Cromátides Hermanas/fisiología , Factores de Transcripción/fisiología , Animales , Humanos , Modelos Genéticos
9.
Mol Cell ; 13(5): 739-50, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-15023343

RESUMEN

The fidelity of chromosome segregation requires that the cohesin protein complex bind together newly replicated sister chromatids both at centromeres and at discrete sites along chromosome arms. Segregation of the yeast 2 micro plasmid also requires cohesin, which is recruited to the plasmid partitioning locus. Here we report that the RSC chromatin-remodeling complex regulates the differential association of cohesin with centromeres and chromosome arms. RSC cycles on and off chromosomal arm and plasmid cohesin binding sites in a cell cycle-regulated manner 15 min preceding Mcd1p, the central cohesin subunit. We show that in rsc mutants Mcd1p fails to associate with chromosome arms but still binds to centromeres, and that consequently, the arm regions of mitotic sister chromosomes separate precociously while cohesion at centromeres is unaffected. Our data suggest a role for RSC in facilitating the loading of cohesin specifically onto chromosome arms, thereby ensuring sister chromatid cohesion and proper chromosome segregation.


Asunto(s)
Segregación Cromosómica/genética , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , Centrómero/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona , Cromosomas Fúngicos/genética , Proteínas de Unión al ADN/genética , Proteínas Fúngicas , Mutación/genética , Proteínas Nucleares/genética , Fosfoproteínas , Plásmidos/genética , Plásmidos/metabolismo , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA