Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Biol ; 20(9): e3001753, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36137002

RESUMEN

The Warburg effect, aerobic glycolysis, is a hallmark feature of cancer cells grown in culture. However, the relative roles of glycolysis and respiratory metabolism in supporting in vivo tumor growth and processes such as tumor dissemination and metastatic growth remain poorly understood, particularly on a systems level. Using a CRISPRi mini-library enriched for mitochondrial ribosomal protein and respiratory chain genes in multiple human lung cancer cell lines, we analyzed in vivo metabolic requirements in xenograft tumors grown in distinct anatomic contexts. While knockdown of mitochondrial ribosomal protein and respiratory chain genes (mito-respiratory genes) has little impact on growth in vitro, tumor cells depend heavily on these genes when grown in vivo as either flank or primary orthotopic lung tumor xenografts. In contrast, respiratory function is comparatively dispensable for metastatic tumor growth. RNA-Seq and metabolomics analysis of tumor cells expressing individual sgRNAs against mito-respiratory genes indicate overexpression of glycolytic genes and increased sensitivity of glycolytic inhibition compared to control when grown in vitro, but when grown in vivo as primary tumors these cells down-regulate glycolytic mechanisms. These studies demonstrate that discrete perturbations of mitochondrial respiratory chain function impact in vivo tumor growth in a context-specific manner with differential impacts on primary and metastatic tumors.


Asunto(s)
Glucólisis , Neoplasias Pulmonares , Línea Celular Tumoral , Glucólisis/genética , Humanos , Neoplasias Pulmonares/patología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismo
2.
Anal Chem ; 95(43): 15884-15892, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37851921

RESUMEN

Affinity-purification mass spectrometry (AP-MS) is an established technique for identifying protein-protein interactions (PPIs). The basic technology involves immobilizing a high-specificity ligand to a solid-phase support (e.g., an agarose or magnetic bead) to pull down protein(s) of interest from cell lysates. Although these supports are engineered to minimize interactions with background protein, the conventional method recovers mostly nonspecific binders. The law of mass action for dilute solutions has taught us to use an excess of beads to capture all target proteins, especially weakly interacting ones. However, modern microbead technology presents a binding environment that is much different from a dilute solution. We describe a fluidic platform that captures and processes ultralow nanoliter quantities of magnetic particles, simultaneously increasing the efficiency of PPI detection and strongly suppressing nonspecific binding. We demonstrate the concept with synthetic mixtures of tagged protein and illustrate performance with a variety of AP-MS experiment types. These include a BioID experiment targeting lamin-A interactors from HeLa cells and pulldowns using GFP-tagged proteins associated with a double-strand DNA repair mechanism. We show that efficient extraction requires saturation of the solid-phase support and that <10 nL of beads is sufficient to generate comprehensive protein interaction maps.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas , Humanos , Células HeLa , Proteínas/metabolismo , Cromatografía de Afinidad/métodos , Fenómenos Químicos
3.
Neurooncol Adv ; 3(1): vdab063, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34131650

RESUMEN

BACKGROUND: Genetically susceptible individuals can develop malignancies after irradiation of normal tissues. In the context of therapeutic irradiation, it is not known whether irradiating benign neoplasms in susceptible individuals promotes neoplastic transformation and worse clinical outcomes. Individuals with Neurofibromatosis 1 (NF1) are susceptible to both radiation-induced second malignancies and spontaneous progression of plexiform neurofibromas (PNs) to malignant peripheral nerve sheath tumors (MPNSTs). The role of radiotherapy in the treatment of benign neoplasms such as PNs is unclear. METHODS: To test whether radiotherapy promotes neoplastic progression of PNs and reduces overall survival, we administered spinal irradiation (SI) to conditional knockout mouse models of NF1-associated PNs in 2 germline contexts: Nf1 fllfl ; PostnCre + and Nf1 fl/- ; PostnCre + . Both genotypes develop extensive Nf1 null spinal PNs, modeling PNs in NF1 patients. A total of 101 mice were randomized to 0 Gy, 15 Gy (3 Gy × 5), or 30 Gy (3 Gy × 10) of spine-focused, fractionated SI and aged until signs of illness. RESULTS: SI decreased survival in both Nf1 fllfl mice and Nf1 fl/- mice, with the worst overall survival occurring in Nf1 fl/- mice receiving 30 Gy. SI was also associated with increasing worrisome histologic features along the PN-MPNST continuum in PNs irradiated to higher radiation doses. CONCLUSIONS: This preclinical study provides experimental evidence that irradiation of pre-existing PNs reduces survival and may shift PNs to higher grade neoplasms.

4.
BMC Med Genomics ; 13(1): 60, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32252771

RESUMEN

BACKGROUND: Despite the emergence of cell-free DNA (cfDNA) as a clinical biomarker in cancer, the tissue origins of cfDNA in healthy individuals have to date been inferred only by indirect and relative measurement methods, such as tissue-specific methylation and nucleosomal profiling. METHODS: We performed the first direct, absolute measurement of the tissue origins of cfDNA, using tissue-specific knockout mouse strains, in both healthy mice and following paracetamol (APAP) overdose. We then investigated the utility of total cfDNA and the percentage of liver-specific cfDNA as clinical biomarkers in patients presenting with APAP overdose. RESULTS: Analysis of cfDNA from healthy tissue-specific knockout mice showed that cfDNA originates predominantly from white and red blood cell lineages, with minor contribution from hepatocytes, and no detectable contribution from skeletal and cardiac muscle. Following APAP overdose in mice, total plasma cfDNA and the percentage fraction originating from hepatocytes increased by ~ 100 and ~ 19-fold respectively. Total cfDNA increased by an average of more than 236-fold in clinical samples from APAP overdose patients with biochemical evidence of liver injury, and 18-fold in patients without biochemically apparent liver injury. Measurement of liver-specific cfDNA, using droplet digital PCR and methylation analysis, revealed that the contribution of liver to cfDNA was increased by an average of 175-fold in APAP overdose patients with biochemically apparent liver injury compared to healthy subjects, but was not increased in overdose patients with normal liver function tests. CONCLUSIONS: We present a novel method for measurement of the tissue origins of cfDNA in healthy and disease states and demonstrate the potential of cfDNA as a clinical biomarker in APAP overdose.


Asunto(s)
Acetaminofén/efectos adversos , Analgésicos no Narcóticos/efectos adversos , Ácidos Nucleicos Libres de Células/análisis , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Sobredosis de Droga/complicaciones , Hígado/metabolismo , Animales , Estudios de Casos y Controles , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA