Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Molecules ; 29(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38893542

RESUMEN

In recent years, there has been increasing attention focused on various products belonging to the imidazopyridine family; this class of heterocyclic compounds shows unique chemical structure, versatile optical properties, and diverse biological attributes. The broad family of imidazopyridines encompasses different heterocycles, each with its own specific properties and distinct characteristics, making all of them promising for various application fields. In general, this useful category of aromatic heterocycles holds significant promise across various research domains, spanning from material science to pharmaceuticals. The various cores belonging to the imidazopyridine family exhibit unique properties, such as serving as emitters in imaging, ligands for transition metals, showing reversible electrochemical properties, and demonstrating biological activity. Recently, numerous noteworthy advancements have emerged in different technological fields, including optoelectronic devices, sensors, energy conversion, medical applications, and shining emitters for imaging and microscopy. This review intends to provide a state-of-the-art overview of this framework from 1955 to the present day, unveiling different aspects of various applications. This extensive literature survey may guide chemists and researchers in the quest for novel imidazopyridine compounds with enhanced properties and efficiency in different uses.

2.
Photochem Photobiol Sci ; 22(3): 603-613, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36374373

RESUMEN

Photo-Fenton processes activated by biodegradable Fe(III)-EDDS complexes have attracted huge attention from the scientific community, but the operative mechanism of the photo-activation of H2O2 in the presence of Fe(III)-EDDS has not been fully clarified yet. The application of the Fe(III)-EDDS complex in Fenton and photo-Fenton (mainly under UV-B light) processes, using 4-chlorophenol (4-CP) as a model pollutant was explored to give insights into the operative mechanism. Furthermore, the potential synergistic contribution of soybean peroxidase (SBP) was investigated, since it has been reported that upon irradiation of Fe(III)-EDDS the production of H2O2 can occur. SBP did not boost the 4-CP degradation, suggesting that the possibly produced H2O2 reacts immediately with the Fe(II) ion with a quick kinetics that does not allow the diffusion of H2O2 into the bulk of the solution (i.e., outside the solvent cage of the complex). So, a concerted mechanism in which the photochemically produced H2O2 and Fe(II) react inside the hydration sphere of the Fe(III)-EDDS complex is proposed.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Compuestos Ferrosos , Peróxido de Hidrógeno/química , Hierro/química , Oxidación-Reducción , Peroxidasa , Peroxidasas , Glycine max
3.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445543

RESUMEN

The current SARS-CoV-2 pandemic causes serious public health, social, and economic issues all over the globe. Surface transmission has been claimed as a possible SARS-CoV-2 infection route, especially in heavy contaminated environmental surfaces, including hospitals and crowded public places. Herein, we studied the deactivation of SARS-CoV-2 on photoactive AgNPs@TiO2 coated on industrial ceramic tiles under dark, UVA, and LED light irradiations. SARS-CoV-2 inactivation is effective under any light/dark conditions. The presence of AgNPs has an important key to limit the survival of SARS-CoV-2 in the dark; moreover, there is a synergistic action when TiO2 is decorated with Ag to enhance the virus photocatalytic inactivation even under LED. The radical oxidation was confirmed as the the central mechanism behind SARS-CoV-2 damage/inactivation by ESR analysis under LED light. Therefore, photoactive AgNPs@TiO2 ceramic tiles could be exploited to fight surface infections, especially during viral severe pandemics.


Asunto(s)
Cerámica/química , Nanopartículas del Metal/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/efectos de la radiación , Titanio/química , Antivirales/farmacología , COVID-19/virología , Humanos , Luz , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Pandemias , Tamaño de la Partícula , SARS-CoV-2/metabolismo , Propiedades de Superficie , Inactivación de Virus/efectos de los fármacos , Inactivación de Virus/efectos de la radiación
4.
Molecules ; 26(18)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34577005

RESUMEN

Vanadium has a good therapeutic potential, as several biological effects, but few side effects, have been demonstrated. Evidence suggests that vanadium compounds could represent a new class of non-platinum, metal antitumor agents. In the present study, we aimed to characterize the antiproliferative activities of fluorescent vanadyl complexes with acetylacetonate derivates bearing asymmetric substitutions on the ß-dicarbonyl moiety on different cell lines. The effects of fluorescent vanadyl complexes on proliferation and cell cycle modulation in different cell lines were detected by ATP content using the CellTiter-Glo Luminescent Assay and flow cytometry, respectively. Western blotting was performed to assess the modulation of mitogen-activated protein kinases (MAPKs) and relevant proteins. Confocal microscopy revealed that complexes were mainly localized in the cytoplasm, with a diffuse distribution, as in podocyte or a more aggregate conformation, as in the other cell lines. The effects of complexes on cell cycle were studied by cytofluorimetry and Western blot analysis, suggesting that the inhibition of proliferation could be correlated with a block in the G2/M phase of cell cycle and an increase in cdc2 phosphorylation. Complexes modulated mitogen-activated protein kinases (MAPKs) activation in a cell-dependent manner, but MAPK modulation can only partly explain the antiproliferative activity of these complexes. All together our results demonstrate that antiproliferative effects mediated by these compounds are cell type-dependent and involve the cdc2 and MAPKs pathway.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Hidroxibutiratos/química , Pentanonas/química , Compuestos de Vanadio/química , Compuestos de Vanadio/farmacología , Transporte Biológico , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colorantes Fluorescentes , Humanos , Concentración 50 Inhibidora , Microscopía Confocal , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Podocitos/efectos de los fármacos , Podocitos/ultraestructura , Inhibidores de Proteínas Quinasas/farmacología
5.
Molecules ; 26(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199539

RESUMEN

The Lab4treat experience has been developed to demonstrate the use of magnetic materials in environmental applications. It was projected in the frame of the European project Mat4Treat, and it was tested several times in front of different audiences ranging from school students to the general public in training and/or divulgation events. The experience lends itself to discuss several aspects of actuality, physics and chemistry, which can be explained by modulating the discussion depth level, in order to meet the interests of younger or more experienced people and expand their knowledge. The topic is relevant, dealing with the recycling of urban waste and water depollution. The paper is placed within the field of water treatment for contaminant removal; therefore, a rich collection of recent (and less recent) papers dealing with magnetic materials and environmental issues is described in the Introduction section. In addition, the paper contains a detailed description of the experiment and a list of the possible topics which can be developed during the activity. The experimental approach makes the comprehension of scientific phenomena effective, and, from this perspective, the paper can be considered to be an example of interactive teaching.

6.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952241

RESUMEN

The growing utilization of renewable and residual biomasses for environmental preservation and remediation are important goals to be pursued to minimize the environmental impact of human activities. In this paper, sodium alginate (derived from brown algae) was crosslinked using chitosan (mainly derived from the exoskeleton of crustaceans) in the presence of biowaste-derived substances isolated from green compost (BBS-GC), to produce hydrogels and dried films. The obtained materials were tested as adsorbents for wastewater remediation. To this purpose, gels were characterized using a multi-analytical approach and used as active substrates for the removal of three differently-charged molecules, chosen as model pollutants: crystal violet, rhodamine B, and orange II. The effectiveness of the gel formulations was demonstrated and attributed to the variety of active functionalities introduced by the different precursors, the structural factors and the peculiar physicochemical properties of the resulting materials.


Asunto(s)
Alginatos/química , Materiales Biocompatibles/química , Quitosano/química , Hidrogeles/química , Membranas Artificiales , Alginatos/ultraestructura , Compostaje/métodos , Restauración y Remediación Ambiental/métodos , Tecnología Química Verde/métodos , Humanos , Invenciones , Microscopía Electrónica de Rastreo , Estructura Molecular , Phaeophyceae/química , Agua de Mar/química , Administración de Residuos/métodos , Aguas Residuales/química
7.
Molecules ; 24(20)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635063

RESUMEN

Hydroxypyrone derivatives have a good bioavailability in rats and mice and have been used in drug development. Moreover, they show chelating properties towards vanadyl cation that could be used in insulin-mimetic compound development. In this work, the formation of coordination compounds of oxovanadium(IV) with four kojic acid (5-hydroxy-2-(hydroxymethyl)-4-pyrone) derivatives was studied. The synthetized studied ligands (S2, S3, S4, and SC) have two or three kojic acid units linked through diamines or tris(2-aminoethyl)amine chains, respectively. The chemical systems were studied by potentiometry (25 °C, ionic strength 0.1 mol L-1 with KCl), and UV-visible and EPR spectroscopy. The experimental data were analyzed by a thermodynamic and a chemometric (Multivariate Curve Resolution-Alternating Least Squares) approach. Chemical coordination models were proposed, together with the species formation constants and the pure estimated UV-vis and EPR spectra. In all systems, the coordination of the oxovanadium(IV) starts already under acidic conditions (the cation is totally bound at pH higher than 3-4) and the metal species remain stable even at pH 8. Ligands S3, S4, and SC form three coordination species. Two of them are probably due to the successive insertion of the kojate units in the coordination shell, whereas the third is most likely a hydrolytic species.


Asunto(s)
Complejos de Coordinación/síntesis química , Pironas/química , Vanadatos/química , Complejos de Coordinación/química , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Estructura Molecular
8.
Macromol Rapid Commun ; 39(13): e1800250, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29806180

RESUMEN

The visible light induced cationic polymerization of epoxides can be achieved by means of multiwalled carbon nanotubes (MWCNTs), which act as visible light photoinitiators via a radical-induced cationic photopolymerization process. When MWCNTs are irradiated with longer wavelengths (above 400 nm), they generate carbon radicals, by means of hydrogen abstraction from the epoxy monomer; these radicals are oxidized in the presence of iodonium salt to a carbocation that is sufficiently reactive to start the cationic ring-opening polymerization of an epoxy monomer. These mechanisms have been supported by electron paramagnetic resonance analysis.


Asunto(s)
Luz , Nanotubos de Carbono/química , Procesos Fotoquímicos , Catálisis
9.
Chempluschem ; 88(5): e202300052, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37139899

RESUMEN

The relevance of hydrogen-bonding, π-π stacking and aurophilic interactions in the solid-state of two new heterobimetallic (AuI -MnII ) complexes is analyzed in this manuscript. They are discrete complexes of formulae [Mn(bipy)2 (H2 O){Au(CN)2 }][Au(CN)2 ] and [Mn(dmbipy)2 {Au(CN)2 }] ⋅ H2 O, (bipy=2,2'-bipyridine and dmbipy=5,5'-dimethyl-2,2'-bipyridine), which are based on dicyanidoaurate(I) groups and 2,2'-bipyridyl-like co-ligands. They have been synthesized in good yields and X-ray characterized. In both compounds, aurophilic, OH⋅⋅⋅N hydrogen bonding and π-π interactions governed the supramolecular assemblies in the solid state. These contacts with special emphasis on the aurophilic interactions have been studied using density functional theory calculations and characterized using the quantum theory of atoms-in-molecules and the noncovalent interaction plot. The aurophilic contacts have been also rationalized from an orbital point of view using the natural bond orbital methodology, evidencing stabilization energies up to 5.7 kcal/mol. Moreover, the interaction energies have been decomposed using the Kitaura-Morokuma energy decomposition analysis, confirming the importance of electrostatic and orbital effects.

10.
RSC Adv ; 11(17): 9911-9920, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35423502

RESUMEN

We present a photoactive composite material for water decontamination consisting of non-purified commercial multiwalled carbon nanotubes (CNT(NP)s) supported on an electrospun polymeric mat made of core-sheath polyacrylonitrile-polypyrrole nanofibers. This is the first system that specifically exploits the superior photocatalytic activity of CNT(NP)s compared with the purified carbon nanotubes usually employed. A CNT(NP) still contains the catalytic metal oxide nanoparticles (NPs) used for its synthesis, embedded in the nanotube structure. Under UV-visible irradiation, these NPs generate highly reactive ˙OH radicals capable of degrading the organic molecules adsorbed on the nanotube. Photocatalytic tests on the composite material show that CNT(NP)s act mostly as a source of photogenerated charge carriers. The adsorption of target substrates occurs preferentially onto the polypyrrole sheath, which shuttles the reactive carriers from CNT(NP)s to the substrates. In addition, UV-visible irradiation of semiconducting polypyrrole generates radical species that directly react with the adsorbed substrates. All synthetic procedures reported are scalable and sustainable. This mechanically resistant and flexible composite overcomes one of the weakest aspects of water treatments that employ suspended nanocatalysts, namely the expensive and poorly scalable recovery of the catalyst through nanofiltration. All these features are required for large-scale photocatalytic treatments of polluted water.

11.
Langmuir ; 26(24): 18600-5, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21090664

RESUMEN

It is demonstrated here that bioactive glasses containing Au nanoparticles (AuNPs) can be selectively functionalized with small molecules carrying either amino or thiol groups by simply varying the temperature and pH of the functionalization batch. The results evidence the following. (i) At room temperature (RT), no functionalization of Au-free glass occurs, whereas in the case of glasses containing AuNPs, stable linkages form only with amino groups, as in this condition Au does not bind with either thiol or hydroxyl groups. The RT functionalization with cysteine and cystine confirms the preferential functionalization through the amino groups, while the -SH groups are oxidized to S-S bridges. (ii) The functionalization with cysteine and cystine, compared at pH = 5, 9, and 12, is shown not to take place at pH = 5 and to be hindered by the glass matrix dissolution at pH = 12 (with consequent release of AuNPs), while the best results are obtained at pH = 9. (iii) For the effect of reaction temperature, at 4 °C it is possible to obtain a strong Au-S interaction, whereas at RT, a weak Au-N linkage is formed. These results should allow production, in a selective way, of different bonds exhibiting different strengths and, consequently, different release times in solution, with a wide range of possible applications (for instance, weak Au-N bonds in the case of drug delivery, strong Au-S bonds in protein immobilization).


Asunto(s)
Aminas/química , Vidrio/química , Oro/química , Nanopartículas del Metal/química , Compuestos de Sulfhidrilo/química , Materiales Biomiméticos/química , Cisteína/química , Cistina/química , Ligandos , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Especificidad por Sustrato
12.
Front Chem ; 8: 763, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005610

RESUMEN

Soybean hulls are one of the by-products of soybean crushing and find application mainly in the animal feed sector. Nevertheless, soybean hulls have been already exploited as source of peroxidase (soybean peroxidase, SBP), an enzyme adopted in a wide range of applications such as bioremediation and wastewater treatment, biocatalysis, diagnostic tests, therapeutics and biosensors. In this work, the soybean hulls after the SBP extraction, destined to become a putrescible waste, were recovered and employed as adsorbents for water remediation due to their cellulose-based composition. They were studied from a physicochemical point of view using different characterization techniques and applied for the adsorption of five inorganic ions [Fe(III), Al(III), Cr(III), Ni(II), and Mn(II)] in different aqueous matrixes. The behavior of the exhausted soybean hulls was compared to pristine hulls, demonstrating better performances as pollutant adsorbents despite significant changes in their features, especially in terms of surface morphology, charge and composition. Overall, this work evidences that these kinds of double-recovered scraps are an effective and sustainable alternative for metal contaminants removal from water.

13.
Materials (Basel) ; 12(23)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795189

RESUMEN

Hybrid magnetite/maghemite nanoparticles (MNP) coated with waste-sourced bio-based substances (BBS) were synthesized and studied for the degradation of phenol, chosen as a model pollutant, in water. A systematic study was undertaken in order to rationalize MNP-BBS behavior and optimize their performance. The effect of experimental parameters, such as light irradiation, addition of hydrogen peroxide, and the ratio between hydrogen peroxide and MNP-BBS concentrations, was studied. The generation of hydroxyl radicals was assessed, and the recovery and re-cycle of the material was investigated. Our results indicate that phenol degradation could be attained by both Fenton and photo-Fenton processes, with higher efficiency in dark condition and in the presence of a suitable amount of hydrogen peroxide. Evidence was obtained for the roles of iron ions leached from the materials as well as of organic matter released in the solution upon partial photodegradation of the organic coating. The reusability tests indicated a lower but still valid performance of the material. Optimization of the experimental conditions was performed to achieve the highest efficiency in substrate degradation, and fundamental insights into the mechanism of the MNP-BBS Fenton-like reaction were obtained.

14.
ACS Omega ; 4(26): 21698-21703, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31891048

RESUMEN

Humiclike substances (HLS) have been demonstrated to be useful auxiliaries to drive the (photo)-Fenton process at mild pH, by avoiding iron inactivation via formation of active complexes. However, the actual performance of the process is affected by a manifold of opposite processes. In this work, the generation of hydroxyl radical-like reactive species in the Fentonlike process has been investigated using electron paramagnetic resonance, employing 5,5-dimethyl-1-pyrroline-N-oxide as a probe molecule. The signal obtained with the Fe(II)-HLS-H2O2 system at pH = 5 was very intense but decreased with time, in line with the difficult reduction of the formed Fe(III) to Fe(II). On the contrary, the signal of the Fe(III)-HLS-H2O2 system was weak but stable. The most intense signal was observed at HLS concentration of ca. 30 mg/L. Interestingly, the performance of the Fenton system at pH = 5 to degrade caffeine followed the same trends, although caffeine removal was very low after 1 h of irradiation. The results were more evident in a solar simulated photo-Fenton process, where an increase in the abatement of caffeine was observed until an HLS concentration of 30 mg/L, where 98% removal was reached after 1 h.

15.
Nanomaterials (Basel) ; 9(2)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699919

RESUMEN

Urban wastes are a potential source of environment contamination, especially when they are not properly disposed. Nowadays, researchers are finding innovative solutions for recycling and reusing wastes in order to favour a sustainable development from the viewpoint of circular economy. In this context, the lignin-like fraction of biomass derived from Green Compost is a cost-effective source of soluble Bio-Based Substances (BBS-GC), namely complex macromolecules/supramolecular aggregates characterized by adsorbing and photosensitizing properties. In this work BBS-GC were immobilized on a silica support (SBA-15) and the chemico-physical properties of the resulting hybrid material (BBS-SBA) were analysed by zeta-potential measurements, nitrogen adsorption at 77K and micro-calorimetric techniques. Successively, the BBS-SBA photosensitizing and adsorption abilities were tested. Adsorption in the dark of Rhodamine B and Orange II on BBS-SBA and their degradation upon irradiation under simulated solar light were shown, together with the formation of hydroxyl radicals detected by Electron Paramagnetic Resonance spectroscopy. Furthermore, the adsorption of six inorganic ions (Al, Ni, Mn, As, Hg, Cr) on BBS-SBA was studied in pure water at two different pH values and in a landfill leachate, showing the good potential of this kind of materials in the removal of wastewater contaminants.

16.
Colloids Surf B Biointerfaces ; 161: 654-661, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29169120

RESUMEN

Peroxidase immobilization onto magnetic supports is considered an innovative strategy for the development of technologies that involves enzymes in wastewater treatment. In this work, magnetic biocatalysts were prepared by immobilization of soybean peroxidase (SBP) onto different silica-coated superparamagnetic iron oxide nanoparticles. The obtained magnetic biocatalysts were tested for the degradation of malachite green (MG), a pollutant often found in industrial wastewaters and with significant drawbacks for the human and environmental health. A deep physicochemical characterization of the materials was performed by means of X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), High Resolution-Transmission Electron Microscope (HR-TEM) and magnetization measurements among others techniques. Results showed high immobilization yield of SBP onto nanomaterials with excellent properties for magnetic recoverability. A partial loss of activity with respect to free SBP was observed, compatible with the modification of the conformational structure of the enzyme after immobilization. The structural modification depended on the amount (and thickness) of silica present in the hybrid materials and the activity yield of 43% was obtained for the best biocatalyst. Thermal stability and reusability capacity were also evaluated.


Asunto(s)
Enzimas Inmovilizadas/química , Magnetismo , Nanopartículas de Magnetita/química , Peroxidasa/química , Proteínas de Plantas/química , Dióxido de Silicio/química , Biocatálisis , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Compuestos Férricos/química , Nanopartículas de Magnetita/ultraestructura , Microscopía Electrónica de Transmisión , Peroxidasa/metabolismo , Proteínas de Plantas/metabolismo , Colorantes de Rosanilina/química , Colorantes de Rosanilina/metabolismo , Glycine max/enzimología , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Difracción de Rayos X
17.
ACS Omega ; 3(10): 13073-13080, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458028

RESUMEN

The valorization of olive oil mill solid wastes (OMW) has been addressed by considering it as a possible source of humic-like substances (HLSs), to be used as auxiliary substances for photo-Fenton, employing caffeine as a target pollutant to test the efficiency of this approach. The OMW-HLS isolation encompassed the OMW basic hydrolysis, followed by ultrafiltration and drying. OMW-HLS structural features have been investigated by means of laser light scattering, fluorescence, size exclusion chromatography, and thermogravimetric analysis; moreover, the capability of OMW-HLS to generate reactive species under irradiation has been investigated using spin-trap electronic paramagnetic resonance. The caffeine degradation by means of photo-Fenton process driven at pH = 5 was significantly increased by the addition of 10 mg/L of OMW-HLS. Under the mechanistic point of view, it could be hypothesized that singlet oxygen is not playing a relevant role, whereas other oxidants (mainly OH• radicals) can be considered as the key species in promoting caffeine degradation.

18.
Protein J ; 25(6): 379-90, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16967316

RESUMEN

The involvement of protein denaturation and/or misfolding processes in the insurgence of several diseases raises the interest in structural dynamic studies of proteins. The use of nitroxide spin labels with electron paramagnetic resonance is a powerful tool for detecting structural changes in proteins. In the present study, we apply this strategy to soybean peroxidase (SBP), a protein characterised by high thermal and structural stability, and we propose a simple method to analyse the anisotropy changes of the protein system and to relate them with the structural changes induced by protein unfolding. We examined the effect of temperature, guanidine hydrochloride and dimethylsulfoxide on the stability of SBP and looked for correlations between the ESR results and the experimental findings obtained by other techniques, reported in the literature. The agreement between data obtained through different strategies supports the validity and reliability of the ESR approach to protein unfolding.


Asunto(s)
Dimetilsulfóxido/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Glycine max/enzimología , Guanidina/química , Peroxidasas/química , Dimetilsulfóxido/farmacología , Guanidina/farmacología , Modelos Moleculares , Peroxidasas/antagonistas & inhibidores , Peroxidasas/metabolismo , Desnaturalización Proteica/efectos de los fármacos , Pliegue de Proteína , Estructura Terciaria de Proteína , Temperatura
19.
Ann Chim ; 96(1-2): 1-11, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16734019

RESUMEN

Natural sediments show sequestering properties that can lead to a process of self-purification of aquatic environment from metal pollution. The study of the interaction between metal ions and sediment particles enhances what is known about the distribution and bioavailability of heavy metals in natural systems. Our contribution concerns the characterisation of the sequestering ability of a River Po sediment with regard to calcium(II), magnesium(II), cadmium(II), nickel(II) and copper(II), in fixed experimental conditions, through pH-metric and spectrometric measurements. A batch titration procedure was adopted and, in each solution, after equilibration, both pH and pM (M = Ca(II), Mg(II), Cd(II), Ni(II), Cu(II)) (via Inductively Coupled Plasma - Optical Emission Spectroscopy, ICP-OES) values were measured. The experimental data were first processed with a specific software to evaluate the concentration and protonation constants of the sediment ligand site(s). The speciation model was then assessed, together with the values of complexation constants, for the different sediment/metal cation systems. In order to better characterise the copper(II)-sediment interaction and to obtain more information about the nature of ligand site(s) involved, EPR (Electronic Paramagnetic Resonance) measurements were also made on the dry sediment before and after reaction with copper(II) ions.


Asunto(s)
Sedimentos Geológicos/análisis , Metales Pesados/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Disponibilidad Biológica , China , Espectroscopía de Resonancia por Spin del Electrón , Monitoreo del Ambiente , Sedimentos Geológicos/química , Concentración de Iones de Hidrógeno , Modelos Biológicos , Espectrofotometría Atómica
20.
Environ Sci Pollut Res Int ; 23(23): 23742-23749, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27623850

RESUMEN

In this paper, the removal of three common dyes (orange I, orange II, and methylorange) and of the anticonvulsant drug carbamazepine from aqueous solutions by means of enzymatic and photocatalytic treatment was studied. Soybean peroxidase (SBP) was used as biocatalyst, both free in solution and immobilized on silica monoliths, and titanium dioxide as photocatalyst. The combination of the two catalysts led to a faster (about two to four times) removal of all the orange dyes compared to the single systems. All the dyes were completely removed within 2 h, also in the presence of immobilized SBP. As for carbamazepine, photocatalytic treatment prevails on the enzymatic degradation, but the synergistic effect of two catalysts led to a more efficient degradation; carbamazepine's complete disappearance was achieved within 60 min with combined system, while up to 2 h is required with TiO2 only.


Asunto(s)
Carbamazepina/química , Colorantes/química , Dióxido de Silicio/química , Titanio/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Compuestos Azo/química , Bencenosulfonatos/química , Peroxidasa/química , Proteínas de Plantas/química , Glycine max/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA