Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 531(7595): 518-22, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27008969

RESUMEN

Focal amplifications of chromosome 3p13-3p14 occur in about 10% of melanomas and are associated with a poor prognosis. The melanoma-specific oncogene MITF resides at the epicentre of this amplicon. However, whether other loci present in this amplicon also contribute to melanomagenesis is unknown. Here we show that the recently annotated long non-coding RNA (lncRNA) gene SAMMSON is consistently co-gained with MITF. In addition, SAMMSON is a target of the lineage-specific transcription factor SOX10 and its expression is detectable in more than 90% of human melanomas. Whereas exogenous SAMMSON increases the clonogenic potential in trans, SAMMSON knockdown drastically decreases the viability of melanoma cells irrespective of their transcriptional cell state and BRAF, NRAS or TP53 mutational status. Moreover, SAMMSON targeting sensitizes melanoma to MAPK-targeting therapeutics both in vitro and in patient-derived xenograft models. Mechanistically, SAMMSON interacts with p32, a master regulator of mitochondrial homeostasis and metabolism, to increase its mitochondrial targeting and pro-oncogenic function. Our results indicate that silencing of the lineage addiction oncogene SAMMSON disrupts vital mitochondrial functions in a cancer-cell-specific manner; this silencing is therefore expected to deliver highly effective and tissue-restricted anti-melanoma therapeutic responses.


Asunto(s)
Melanoma/genética , Melanoma/patología , Oncogenes/genética , ARN Largo no Codificante/genética , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Proteínas Portadoras , Linaje de la Célula , Proliferación Celular , Supervivencia Celular , Cromosomas Humanos Par 3/genética , Células Clonales/metabolismo , Células Clonales/patología , Femenino , Amplificación de Genes/genética , Técnicas de Silenciamiento del Gen , Humanos , Melanoma/terapia , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Terapia Molecular Dirigida , ARN Largo no Codificante/uso terapéutico , Factores de Transcripción SOXE/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
PLoS Genet ; 11(10): e1005555, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26440048

RESUMEN

MIcrophthalmia-associated Transcription Factor (MITF) regulates melanocyte and melanoma physiology. We show that MITF associates the NURF chromatin-remodelling factor in melanoma cells. ShRNA-mediated silencing of the NURF subunit BPTF revealed its essential role in several melanoma cell lines and in untransformed melanocytes in vitro. Comparative RNA-seq shows that MITF and BPTF co-regulate overlapping gene expression programs in cell lines in vitro. Somatic and specific inactivation of Bptf in developing murine melanoblasts in vivo shows that Bptf regulates their proliferation, migration and morphology. Once born, Bptf-mutant mice display premature greying where the second post-natal coat is white. This second coat is normally pigmented by differentiated melanocytes derived from the adult melanocyte stem cell (MSC) population that is stimulated to proliferate and differentiate at anagen. An MSC population is established and maintained throughout the life of the Bptf-mutant mice, but these MSCs are abnormal and at anagen, give rise to reduced numbers of transient amplifying cells (TACs) that do not express melanocyte markers and fail to differentiate into mature melanin producing melanocytes. MSCs display a transcriptionally repressed chromatin state and Bptf is essential for reactivation of the melanocyte gene expression program at anagen, the subsequent normal proliferation of TACs and their differentiation into mature melanocytes.


Asunto(s)
Antígenos Nucleares/genética , Ensamble y Desensamble de Cromatina/genética , Melanoma/genética , Células Madre Mesenquimatosas , Factor de Transcripción Asociado a Microftalmía/genética , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , División Celular/genética , Regulación del Desarrollo de la Expresión Génica , Folículo Piloso , Melanocitos/metabolismo , Melanoma/patología , Ratones
3.
Sci Adv ; 10(10): eadj5101, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446896

RESUMEN

Endothelial cells play crucial roles in physiology and are increasingly recognized as therapeutic targets in cardiovascular disease. Here, we analyzed the regulatory landscape of cardiac endothelial cells by assessing chromatin accessibility, histone modifications, and 3D chromatin organization and confirmed the functional relevance of enhancer-promoter interactions by CRISPRi-mediated enhancer silencing. We used this dataset to explore mechanisms of transcriptional regulation in cardiovascular disease and compared six different experimental models of heart failure, hypertension, or diabetes. Enhancers that regulate gene expression in diseased endothelial cells were enriched with binding sites for a distinct set of transcription factors, including the mineralocorticoid receptor (MR), a known drug target in heart failure and hypertension. For proof of concept, we applied endothelial cell-specific MR deletion in mice to confirm MR-dependent gene expression and predicted direct MR target genes. Overall, we have compiled here a comprehensive atlas of cardiac endothelial cell enhancer elements that provides insight into the role of transcription factors in cardiovascular disease.


Asunto(s)
Ascomicetos , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Hipertensión , Animales , Ratones , Células Endoteliales , Receptores de Mineralocorticoides/genética , Factores de Transcripción , Elementos de Facilitación Genéticos , Expresión Génica
4.
JCI Insight ; 7(21)2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36107619

RESUMEN

Malignant melanoma is a major public health issue displaying frequent resistance to targeted therapy and immunotherapy. A major challenge lies in better understanding how melanoma cells evade immune elimination and how tumor growth and metastasis is facilitated by the tumor microenvironment. Here, we show that expression of the cytokine thymic stromal lymphopoietin (TSLP) by epidermal keratinocytes is induced by cutaneous melanoma in both mice and humans. Using genetically engineered models of melanoma and tumor cell grafting combined with TSLP-KO or overexpression, we defined a crosstalk between melanoma cells, keratinocytes, and immune cells in establishing a tumor-promoting microenvironment. Keratinocyte-derived TSLP is induced by signals derived from melanoma cells and subsequently acts via immune cells to promote melanoma progression and metastasis. Furthermore, we show that TSLP signals through TSLP receptor-expressing (TSLPR-expressing) DCs to play an unrecognized role in promoting GATA3+ Tregs expressing a gene signature including ST2, CCR8, ICOS, PD-1, CTLA-4, and OX40 and exhibiting a potent suppressive activity on CD8+ T cell proliferation and IFN-γ production. An analogous population of GATA3-expressing Tregs was also identified in human melanoma tumors. Our study provides insights into the role of TSLP in programming a protumoral immune microenvironment in cutaneous melanoma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Ratones , Animales , Microambiente Tumoral , Melanoma/genética , Melanoma/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Citocinas/metabolismo , Queratinocitos/metabolismo , Linfopoyetina del Estroma Tímico , Melanoma Cutáneo Maligno
5.
Cell Death Differ ; 27(1): 29-43, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31065107

RESUMEN

Somatic oncogenic mutation of BRAF coupled with inactivation of PTEN constitute a frequent combination of genomic alterations driving the development of human melanoma. Mice genetically engineered to conditionally express oncogenic BrafV600E and inactivate Pten in melanocytes following tamoxifen treatment rapidly develop melanoma. While early-stage melanomas comprised melanin-pigmented Mitf and Dct-expressing cells, expression of these and other melanocyte identity genes was lost in later stage tumours that showed histological and molecular characteristics of de-differentiated neural crest type cells. Melanocyte identity genes displayed loss of active chromatin marks and RNA polymerase II and gain of heterochromatin marks, indicating epigenetic reprogramming during tumour progression. Nevertheless, late-stage tumour cells grown in culture re-expressed Mitf, and melanocyte markers and Mitf together with Sox10 coregulated a large number of genes essential for their growth. In this melanoma model, somatic inactivation that the catalytic Brg1 (Smarca4) subunit of the SWI/SNF complex and the scaffolding Bptf subunit of the NuRF complex delayed tumour formation and deregulated large and overlapping gene expression programs essential for normal tumour cell growth. Moreover, we show that Brg1 and Bptf coregulated many genes together with Mitf and Sox10. Together these transcription factors and chromatin remodelling complexes orchestrate essential gene expression programs in mouse melanoma cells.


Asunto(s)
Antígenos Nucleares/fisiología , ADN Helicasas/fisiología , Regulación Neoplásica de la Expresión Génica , Melanoma Experimental/genética , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Factores de Transcripción/fisiología , Animales , Antígenos Nucleares/genética , ADN Helicasas/genética , Progresión de la Enfermedad , Epigénesis Genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fosfohidrolasa PTEN/genética , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Factores de Transcripción/genética , Células Tumorales Cultivadas
6.
Biol Aujourdhui ; 210(4): 283-295, 2016.
Artículo en Francés | MEDLINE | ID: mdl-28327285

RESUMEN

Malignant melanoma is a highly aggressive cancer with a propensity for early metastasis. Melanocyte transformation results predominantly from oncogenic mutations in BRAF, NRAS or NF1 leading to constitutive activation of the MAP kinase pathway driving cell proliferation and second site mutations such as loss of CDKN1A, or PTEN or activating mutations in the beta-catenin pathway that allow escape from oncogene induced senescence. Nevertheless, irrespective of the nature of the driver mutations, melanoma cell physiology is strongly regulated by transcription factors and epigenetic mechanisms. MITF (Microphthalmia-associated Transcription Factor) and SOX10 are two major transcription factors that regulate both normal melanocyte and melanoma cell physiology. Using a combination of mouse genetics, biochemistry and high throughput genomics we have identified cofactors for MITF and addressed the mechanisms by which MITF, SOX10 and their cofactors regulate gene expression in melanocytes and melanoma.


Asunto(s)
Epigénesis Genética/fisiología , Melanoma/genética , Neoplasias Cutáneas/genética , Animales , Linaje de la Célula/genética , Ensamble y Desensamble de Cromatina/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos , Melanocitos/metabolismo , Melanocitos/fisiología , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Unión Proteica , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
7.
Elife ; 42015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25803486

RESUMEN

Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , ADN Helicasas/metabolismo , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteínas Nucleares/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Reparación del ADN/genética , Replicación del ADN/genética , Regulación Neoplásica de la Expresión Génica , Genoma , Humanos , Melanocitos/metabolismo , Melanoma/patología , Ratones , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Unión Proteica , Transporte de Proteínas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA