Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Molecules ; 29(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276623

RESUMEN

Among breast cancer subtypes, triple-negative breast cancer stands out as the most aggressive, with patients facing a 40% mortality rate within the initial five years. The limited treatment options and unfavourable prognosis for triple-negative patients necessitate the development of novel therapeutic strategies. Photodynamic therapy (PDT) is an alternative treatment that can effectively target triple-negative neoplastic cells such as MDA-MB-231. In this in vitro study, we conducted a comparative analysis of the PDT killing rate of unbound Rose Bengal (RB) in solution versus RB-encapsulated chitosan nanoparticles to determine the most effective approach for inducing cytotoxicity at low laser powers (90 mW, 50 mW, 25 mW and 10 mW) and RB concentrations (50 µg/mL, 25 µg/mL, 10 µg/mL and 5 µg/mL). Intracellular singlet oxygen production and cell uptake were also determined for both treatment modalities. Dark toxicity was also assessed for normal breast cells. Despite the low laser power and concentration of nanoparticles (10 mW and 5 µg/mL), MDA-MB-231 cells experienced a substantial reduction in viability (8 ± 1%) compared to those treated with RB solution (38 ± 10%). RB nanoparticles demonstrated higher singlet oxygen production and greater uptake by cancer cells than RB solutions. Moreover, RB nanoparticles display strong cytocompatibility with normal breast cells (MCF-10A). The low activation threshold may be a crucial advantage for specifically targeting malignant cells in deep tissues.


Asunto(s)
Fotoquimioterapia , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Rosa Bengala/farmacología , Rosa Bengala/uso terapéutico , Oxígeno Singlete , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
2.
Bioelectromagnetics ; 44(7-8): 181-191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908196

RESUMEN

Electric-field stimulation of neuronal activity can be used to improve the speed of regeneration for severed and damaged nerves. Most techniques, however, require invasive electronic circuitry which can be uncomfortable for the patient and can damage surrounding tissue. A recently suggested technique uses a graft-antenna-a metal ring wrapped around the damaged nerve-powered by an external magnetic stimulation device. This technique requires no electrodes and internal circuitry with leads across the skin boundary or internal power, since all power is provided wirelessly. This paper examines the microscopic basic mechanisms that allow the magnetic stimulation device to cause neural activation via the graft-antenna. A computational model of the system was created and used to find that under magnetic stimulation, diverging electric fields appear at the metal ring's edges. If the magnetic stimulation is sufficient, the gradients of these fields can trigger neural activation in the nerve. In-vivo measurements were also performed on rat sciatic nerves to support the modeling finding that direct contact between the antenna and the nerve ensures neural activation given sufficient magnetic stimulation. Simulations also showed that the presence of a thin gap between the graft-antenna and the nerve does not preclude neural activation but does reduce its efficacy.


Asunto(s)
Neuronas , Nervio Ciático , Ratas , Animales , Humanos , Electrodos , Nervio Ciático/fisiología , Estimulación Eléctrica , Imanes
3.
Molecules ; 28(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37836744

RESUMEN

Cancer, a prominent cause of death, presents treatment challenges, including high dosage requirements, drug resistance, poor tumour penetration and systemic toxicity in traditional chemotherapy. Photodynamic therapy, using photosensitizers like rose bengal (RB) with a green laser, shows promise against breast cancer cells in vitro. However, the hydrophilic RB struggles to efficiently penetrate the tumour site due to the unique clinical microenvironment, aggregating around rather than entering cancer cells. In this study, we have synthesized and characterized RB-encapsulated chitosan nanoparticles with a peak particle size of ~200 nm. These nanoparticles are readily internalized by cells and, in combination with a green laser (λ = 532 nm) killed 94-98% of cultured human breast cancer cells (MCF-7) and prostate cancer cells (PC3) at a low dosage (25 µg/mL RB-nanoparticles, fluence ~126 J/cm2, and irradiance ~0.21 W/cm2). Furthermore, these nanoparticles are not toxic to cultured human normal breast cells (MCF10A), which opens an avenue for translational applications.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Fotoquimioterapia , Neoplasias de la Próstata , Masculino , Humanos , Rosa Bengala/farmacología , Fármacos Fotosensibilizantes/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Microambiente Tumoral
4.
Lasers Surg Med ; 54(5): 758-766, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35195285

RESUMEN

BACKGROUND AND OBJECTIVES: Biocompatible nanoparticles have been increasingly used in a variety of medical applications, including photodynamic therapy. Although the impact of synthesis parameters and purification methods is reported in previous studies, it is still challenging to produce a reliable protocol for the fabrication, purification, and characterization of nanoparticles in the 200-300 nm range that are highly monodisperse for biomedical applications. STUDY DESIGN/MATERIALS AND METHODS: We investigated the synthesis of chitosan nanoparticles in the 200-300 nm range by evaluating the chitosan to sodium tripolyphosphate (TPP) mass ratio and acetic acid concentration of the chitosan solution. Chitosan nanoparticles were also crosslinked to rose bengal and incubated with human breast cancer cells (MCF-7) to test photodynamic activity using a green laser (λ = 532 nm, power = 90 mW). RESULTS: We established a simple protocol to fabricate and purify biocompatible nanoparticles with the most frequent size occurring between 200 and 300 nm. This was achieved using a chitosan to TPP mass ratio of 5:1 in 1% v/v acetic acid at a pH of 5.5. The protocol involved the formation of nanoparticle coffee rings that showed the particle shape to be spherical in the first approximation. Photodynamic treatment with rose bengal-nanoparticles killed ~98% of cancer cells. CONCLUSION: A simple protocol was established to prepare and purify spherical and biocompatible chitosan nanoparticles with a peak size of ~200 nm. These have remarkable antitumor activity when coupled with photodynamic treatment.


Asunto(s)
Quitosano , Nanopartículas , Fotoquimioterapia , Quitosano/química , Quitosano/uso terapéutico , Café , Humanos , Nanopartículas/química , Tamaño de la Partícula , Rosa Bengala/farmacología , Rosa Bengala/uso terapéutico
5.
Biomed Eng Online ; 17(1): 7, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29357892

RESUMEN

BACKGROUND: Extracellular matrices (ECMs) are often used in reconstructive surgery to enhance tissue regeneration and remodeling. Sutures and staples are currently used to fix ECMs to tissue although they can be invasive devices. Other sutureless and less invasive techniques, such as photochemical tissue bonding, cannot be coupled to ECMs because of their intrinsic opacity to light. RESULTS: We succeeded in fabricating a biocompatible and adhesive device that is based on ovine forestomach matrix (OFM) and a chitosan adhesive. The natural opacity of the OFM has been overcome by adding the adhesive into the matrix that allows for the light to effectively penetrate through it. The OFM-chitosan device is semitransparent (attenuation length ~ 106 µm) and can be photoactivated by green light to bond to tissue. This device does not require sutures or staples and guarantees a bonding strength of ~ 23 kPa. CONCLUSIONS: A new semitransparent and biocompatible bandage has been successfully fabricated and characterized for sutureless tissue bonding.


Asunto(s)
Vendajes , Quitosano/química , Matriz Extracelular/química , Fenómenos Ópticos , Procesos Fotoquímicos , Adhesividad , Animales , Femenino , Rayos Láser , Ensayo de Materiales , Fenómenos Mecánicos , Ovinos
6.
Somatosens Mot Res ; 33(1): 20-8, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26899181

RESUMEN

The effects of changes to cold, mechanical, and heat thresholds following median nerve transection with repair by sutures (Su) or Rose Bengal adhesion (RA) were compared to sham-operated animals. Both nerve-injured groups showed a transient, ipsilateral hyposensitivity to mechanical and heat stimuli followed by a robust and long-lasting hypersensitivity (6-7 weeks) with gradual recovery towards pre-injury levels by 90 days post-repair. Both tactile and thermal hypersensitivity were seen in the contralateral limb that was similar in onset but differed in magnitude and resolved more rapidly compared to the injured limb. Prior to injury, no animals showed any signs of aversion to cold plate temperatures of 4-16 °C. After injury, animals showed cold allodynia, lasting for 7 weeks in RA-repaired rats before recovering towards pre-injury levels, but were still present at 12 weeks in Su-repaired rats. Additionally, sensory recovery in the RA group was faster compared to the Su group in all behavioural tests. Surprisingly, sham-operated rats showed similar bilateral behavioural changes to all sensory stimuli that were comparable in onset and magnitude to the nerve-injured groups but resolved more quickly compared to nerve-injured rats. These results suggest that nerve repair using a sutureless approach produces an accelerated recovery with reduced sensorimotor disturbances compared to direct suturing. They also describe, for the first time, that unilateral forelimb nerve injury produces mirror-image-like sensory perturbations in the contralateral limb, suggesting that the contralateral side is not a true control for sensory testing. The potential mechanisms involved in this altered behaviour are discussed.


Asunto(s)
Trastornos Neurológicos de la Marcha/etiología , Neuropatía Mediana/complicaciones , Neuropatía Mediana/cirugía , Umbral del Dolor/fisiología , Procedimientos Quirúrgicos sin Sutura/métodos , Suturas , Animales , Frío , Modelos Animales de Enfermedad , Femenino , Lateralidad Funcional , Calor , Dimensión del Dolor , Ratas , Ratas Long-Evans , Factores de Tiempo
7.
Neurosurg Rev ; 37(4): 585-95, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25015388

RESUMEN

Peripheral nerve repair for complete section injuries employ reconstructive techniques that invariably require sutures in their application. Sutures are unable to seal the nerve, thus incapable of preventing leakage of important intraneural fluids from the regenerating nerve. Furthermore, sutures are technically demanding to apply for direct repairs and often induce detrimental scarring that impedes healing and functional recovery. To overcome these limitations, biocompatible and biodegradable glues have been used to seal and repair peripheral nerves. Although creating a sufficient seal, they can lack flexibility and present infection risks or cytotoxicity. Other adhesive biomaterials have recently emerged into practice that are usually based on proteins such as albumin and collagen or polysaccharides like chitosan. These adhesives form their union to nerve tissue by either photothermal (tissue welding) or photochemical (tissue bonding) activation with laser light. These biomaterial adhesives offer significant advantages over sutures, such as their capacity to unite and seal the epineurium, ease of application, reduced invasiveness and add the potential for drug delivery in situ to facilitate regeneration. This paper reviews a number of different peripheral nerve repair (or reconstructive) techniques currently used clinically and in experimental procedures for nerve injuries with or without tissue deficit.


Asunto(s)
Procedimientos Neuroquirúrgicos/métodos , Nervios Periféricos/cirugía , Suturas , Materiales Biocompatibles , Humanos
8.
Lasers Med Sci ; 29(1): 157-63, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23525830

RESUMEN

Fungal infection of nails, onychomycosis, is predominantly caused by Trichophyton rubrum. This infection is an important public health concern due to its persistent nature and high recurrence rates. Alternative treatments are urgently required. One such alternative is phototherapy involving the action of photothermal or photochemical processes. The aim of this novel study was to assess which wavelengths within the ultraviolet (UV) spectrum were inhibitory and equally important nail transmissible. Initial irradiations of T. rubrum spore suspensions were carried out using a tunable wavelength lamp system (fluence ≤3.1 J/cm(2)) at wavelengths between 280 and 400 nm (UVC to UVA) to evaluate which wavelengths prevented fungal growth. Light-emitting diodes (LEDs) of defined wavelengths were subsequently chosen with a view to evaluate and potentially implement this technology as a low-cost "in-home" treatment. Our experiments demonstrated that exposure at 280 nm using an LED with a fluence as low as 0.5 J/cm(2) was inhibitory, i.e., no growth following a 2-week incubation (p < 0.05; one-way ANOVA), while exposure to longer wavelengths was not. A key requirement for the use of phototherapy in the treatment of onychomycosis is that it must be nail transmissible. Our results indicate that the treatment with UVC is not feasible given that there is no overlap between the antifungal activity observed at 280 nm and transmission through the nail plate. However, a potential indirect application of this technology could be the decontamination of reservoirs of infection such as the shoes of infected individuals, thus preventing reinfection.


Asunto(s)
Onicomicosis/radioterapia , Trichophyton/efectos de la radiación , Terapia Ultravioleta/métodos , Dermatosis del Pie/microbiología , Dermatosis del Pie/radioterapia , Humanos , Uñas/microbiología , Uñas/efectos de la radiación , Onicomicosis/microbiología , Fenómenos Ópticos , Fototerapia/métodos , Esporas Fúngicas/efectos de la radiación , Trichophyton/patogenicidad , Rayos Ultravioleta
9.
Neural Regen Res ; 19(8): 1702-1706, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103235

RESUMEN

Nerve stimulation is a rapidly developing field, demonstrating positive outcomes across several conditions. Despite potential benefits, current nerve stimulation devices are large, complicated, and are powered via implanted pulse generators. These factors necessitate invasive surgical implantation and limit potential applications. Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications. However, device miniaturization presents a serious engineering challenge. This review presents significant advancements from several groups that have overcome this challenge and developed millimetric-sized nerve stimulation devices. These are based on antennas, mini-coils, magneto-electric and opto-electronic materials, or receive ultrasound power. We highlight key design elements, findings from pilot studies, and present several considerations for future applications of these devices.

10.
ACS Appl Mater Interfaces ; 16(22): 28969-28979, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38778796

RESUMEN

Organic mixed ionic-electronic conductors (OMIECs) are being explored in applications such as bioelectronics, biosensors, energy conversion and storage, and optoelectronics. OMIECs are largely composed of conjugated polymers that couple ionic and electronic transport in their structure as well as synthetic flexibility. Despite extensive research, previous studies have mainly focused on either enhancing ion conduction or enabling synthetic modification. This limited the number of OMIECs that excel in both domains. Here, a series of OMIECs based on functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) copolymers that combine efficient ion/electron transport with the versatility of post-functionalization were developed. EDOT monomers bearing sulfonic (EDOTS) and carboxylic acid (EDOTCOOH) groups were electrochemically copolymerized in different ratios on oxygen plasma-treated conductive substrates. The plasma treatment enabled the synthesis of copolymers containing high ratios of EDOTS (up to 68%), otherwise not possible with untreated substrates. This flexibility in synthesis resulted in the fabrication of copolymers with tunable properties in terms of conductivity (2-0.0019 S/cm) and ion/electron transport, for example, as revealed by their volumetric capacitances (122-11 F/cm3). The importance of the organic nature of the OMIECs that are amenable to synthetic modification was also demonstrated. EDOTCOOH was successfully post-functionalized without influencing the ionic and electronic transport of the copolymers. This opens a new way to tailor the properties of the OMIECs to specific applications, especially in the field of bioelectronics.

11.
Mater Horiz ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041229

RESUMEN

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) remains the most investigated conjugated polymer in bioelectronics, due to its biocompatibility, high conductivity, and commercial availability. Despite these advantages, it suffers from structural and electronic instability, associated with the PSS component. Here, a graft copolymer based on ionised sulfonic modified PEDOT, poly(EDOTS-g-EDOT), was electrochemically synthesised with demonstrated structural and electronic stability and enhanced electrochemical performance. The graft copolymer was insoluble in water without crosslinking, and exhibited enhanced ion diffusion upon electrochemical switching, as revealed by its volumetric capacitance (159 ± 8 F cm-3), which was significantly higher than that of spin-coated PEDOT:PSS films (41 ± 5 F cm-3). Similarly, its performance as an active channel material in organic electrochemical transistors (OECTs) was superior to the spin-coated PEDOT:PSS, as shown for instance by its high normalised transconductance (273 ± 79 S cm-1) and a significantly high ION/IOFF ratio (19 345 ± 1205). Its short- and long-term electronic stability were also confirmed with no drop in its output drain current, despite its high swelling degree. In contrast, the spin-coated PEDOT:PSS experienced a significant deterioration in its performance over the same operational time. The facile synthesis and improved performance of poly(EDOTS-g-EDOT) highlight the importance of innovative material design in overcoming existing operational shortcomings in electronic devices.

12.
Photochem Photobiol ; 100(1): 115-128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37477110

RESUMEN

Rose bengal (RB) solutions coupled with a green laser have proven to be efficient in clearing resilient nail infections caused by Trichophyton rubrum in a human pilot study and in extensive in vitro experiments. Nonetheless, the RB solution can become diluted or dispersed over the tissue and prevented from penetrating the nail plate to reach the subungual area where fungal infection proliferates. Nanoparticles carrying RB can mitigate the problem of dilution and are reported to effectively penetrate through the nail. For this reason, we have synthesized RB-encapsulated chitosan nanoparticles with a peak distribution size of ~200 nm and high reactive oxygen species (ROS) production. The RB-encapsulated chitosan nanoparticles aPDT were shown to kill more than 99% of T. rubrum, T. mentagrophytes, and T. interdigitale spores, which are the common clinically relevant pathogens in onychomycosis. These nanoparticles are not cytotoxic against human fibroblasts, which promotes their safe application in clinical translation.


Asunto(s)
Quitosano , Onicomicosis , Humanos , Trichophyton , Rosa Bengala/farmacología , Proyectos Piloto , Onicomicosis/tratamiento farmacológico
13.
Anal Bioanal Chem ; 405(21): 6873-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23780229

RESUMEN

Chitosan is a biopolymer of increasing significance, as well as a renewable and sustainable material. Its main molecular characteristics are molar mass and degree of acetylation (composition). Precise average degrees of acetylation were measured by quantitative (1)H solution-state NMR spectroscopy. While number-average degrees of acetylation had already been determined by (1)H NMR spectroscopy, weight-average degrees of acetylation are also determined and may be more relevant for some properties, such as mechanical properties. We report the first separation of chitosan according to its degree of acetylation using free solution capillary electrophoresis. Capillary electrophoresis separates chitosan in the 'critical conditions': the molar mass plays little role and the separation is by the degree of acetylation. It characterises the heterogeneity of chitosan samples in terms of composition (dispersity of the distribution of degrees of acetylation). This heterogeneity (broad distribution of degrees of acetylation) cannot be neglected contrary to a common assumption found in the literature. This fast and easy separation will allow establishing a structure-property relationships.


Asunto(s)
Quitosano/química , Quitosano/aislamiento & purificación , Electroforesis Capilar/métodos , Espectroscopía de Resonancia Magnética/métodos , Acetilación , Protones
14.
Adv Healthc Mater ; : e2302354, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37883783

RESUMEN

Conjugated polymers are enabling the development of flexible bioelectronics, largely driven by their organic nature which facilitates modification and tuning to suit a variety of applications. As organic semiconductors, conjugated polymers require a dopant to exhibit electrical conductivity, which in physiological conditions can result in dopant loss and thereby deterioration in electronic properties. To overcome this challenge, "self-doped" and self-acid-doped conjugated polymers having ionized pendant groups covalently bound to their backbone are being developed. The ionized group in a "self-doped" polymer behaves as the counterion that maintains electroneutrality, while an external dopant is required to induce charge transfer. The ionized group in a self-acid-doped polymer induces charge transfer and behaves as the counterion balancing the charges. Despite their doping processes being different, the two terms, self-doped and self-acid-doped, are often used interchangeably in the literature. Here, the differences are highlighted in the doping mechanisms of self-doped and self-acid-doped polymers, and it is proposed that the term "self-doped" should be replaced by "self-compensated," while reserving the term self-acid-doped for polymers that are intrinsically doped without the need of an external dopant. This is followed by a summary of examples of self-acid-doping in bioelectronics, highlighting their stability in the conductive state under physiological conditions.

15.
Front Cell Neurosci ; 17: 1095259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816852

RESUMEN

Spinal cord injury (SCI) is a devastating condition that causes severe loss of motor, sensory and autonomic functions. Additionally, many individuals experience chronic neuropathic pain that is often refractory to interventions. While treatment options to improve outcomes for individuals with SCI remain limited, significant research efforts in the field of electrical stimulation have made promising advancements. Epidural electrical stimulation, peripheral nerve stimulation, and functional electrical stimulation have shown promising improvements for individuals with SCI, ranging from complete weight-bearing locomotion to the recovery of sexual function. Despite this, there is a paucity of mechanistic understanding, limiting our ability to optimize stimulation devices and parameters, or utilize combinatorial treatments to maximize efficacy. This review provides a background into SCI pathophysiology and electrical stimulation methods, before exploring cellular and molecular mechanisms suggested in the literature. We highlight several key mechanisms that contribute to functional improvements from electrical stimulation, identify gaps in current knowledge and highlight potential research avenues for future studies.

16.
Microsyst Nanoeng ; 9: 145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025887

RESUMEN

Biomedical investigations in nanotherapeutics and nanomedicine have recently intensified in pursuit of new therapies with improved efficacy. Quantum dots (QDs) are promising nanomaterials that possess a wide array of advantageous properties, including electronic properties, optical properties, and engineered biocompatibility under physiological conditions. Due to these characteristics, QDs are mainly used for biomedical labeling and theranostic (therapeutic-diagnostic) agents. QDs can be functionalized with ligands to facilitate their interaction with the immune system, specific IgE, and effector cell receptors. However, undesirable side effects such as hypersensitivity and toxicity may occur, requiring further assessment. This review systematically summarizes the potential uses of QDs in the allergy field. An overview of the definition and development of QDs is provided, along with the applications of QDs in allergy studies, including the detection of allergen-specific IgE (sIgE), food allergens, and sIgE in cellular tests. The potential treatment of allergies with QDs is also described, highlighting the toxicity and biocompatibility of these nanodevices. Finally, we discuss the current findings on the immunotoxicity of QDs. Several favorable points regarding the use of QDs for allergy diagnosis and treatment are noted.

17.
Lasers Surg Med ; 44(9): 762-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23001619

RESUMEN

BACKGROUND AND OBJECTIVES: Photochemical tissue bonding (PTB) using rose bengal (RB) in conjunction with light is an alternative technique to repair tissue without suturing. It was recently demonstrated that laser-irradiated chitosan films, incorporating RB, bonded firmly to calf intestine in vitro. It is thus required to investigate the possible cytotoxic effects of the RB-chitosan adhesive on cells before testing its application to in vivo models. MATERIALS AND METHODS: Adhesive films, based on chitosan and containing ~0.1 wt% RB were fabricated. Their cytotoxicity was assessed by growing human and murine fibroblasts either in media in which adhesive strips had been incubated, or directly on the adhesive. The adhesive was either laser-irradiated or not. Cells were stained after 48 hours with Trypan blue and the number of live and dead cells was recorded for cell viability. RESULTS: Murine and human fibroblasts grew confluent on the adhesives with no apparent morphological changes or any exclusion zone. Cell numbers of murine fibroblasts were not significantly different when cultured in media that was extracted from irradiated (86 ± 7%) and non-irradiated adhesive (89 ± 4%). A similar result was obtained for the human fibroblasts. CONCLUSIONS: These findings support that the RB-chitosan films induced negligible toxicity and growth retardation in murine and human fibroblasts.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Quitosano/efectos adversos , Fibroblastos/efectos de los fármacos , Fármacos Fotosensibilizantes/efectos adversos , Rosa Bengala/efectos adversos , Adhesivos Tisulares/efectos adversos , Animales , Células Cultivadas , Humanos , Láseres de Semiconductores , Ratones
18.
DNA Cell Biol ; 41(2): 225-234, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34986032

RESUMEN

Hereditary sensory neuropathy type 1A (HSN1A) is an autosomal, dominantly inherited peripheral neuropathy caused by mutations in serine palmitoyl transferase long chain 1 (SPTLC1), involved in the de novo synthesis of sphingolipids. We have previously reported calcium imbalance, as well as mitochondrial and ER stress in both HSN1 patient lymphoblasts and a transiently transfected cell model. In this study, we investigated the role of the Ca2+-activated protease calpain in destabilizing the cell cytoskeleton, by examining calpain activity in SH-SY5Y cells overexpressing the V144D mutant and changes in microtubule-associated proteins (MAP). Intramitochondrial Ca2+ was found to be significantly depleted and cytoplasmic Ca2+ increased in the V144D mutant. Subsequently, calpain and proteasome activity were increased and calpain substrates, microtubule associated proteins MAP2, and tau were significantly reduced in the microtubule fraction of the mutant. Significant changes were also found in motor proteins dynein and KIF2A detected in the microtubule fraction of cells overexpressing the V144D mutation. There was also a reduction in anterograde and retrograde mitochondrial transport velocities in the V144D mutant. These findings strongly implicate cytoskeletal aberration caused by Ca2+ dysregulation and subsequent loss of microtubule transport functions as the cause of axonal dying back that is characteristic of HSN1.


Asunto(s)
Calcio
19.
J Biophotonics ; 14(1): e202000340, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33058451

RESUMEN

Photodynamic therapy (PDT) with Rose Bengal has previously achieved eradication of Trichophyton rubrum infections causing toenail onychomycosis; however, its antifungal activity against other clinically relevant dermatophytes has yet to be studied. Here, we test the efficacy of PDT using Rose Bengal (140 µM) and 532 nm irradiation (101 J/cm2 ) against Trichophyton mentagrophytes and Trichophyton interdigitale spores, in comparison to T. rubrum. A significant reduction (>99%) of T. mentagrophytes and T. interdigitale was observed, while actual eradication of viable T. rubrum was achieved (99.99%). Laser irradiation alone inhibited growth of T. rubrum (55.2%) and T. mentagrophytes (45.2%) significantly more than T. interdigitale (25.5%) (P = .0086), which may indicate an increased presence of fungal pigments, xanthomegnin and melanin. The findings suggest that Rose Bengal-PDT can act against a broader spectrum of fungal pathogens, and with continued development may be employed in a wider range of clinical antifungal applications.


Asunto(s)
Rosa Bengala , Trichophyton , Arthrodermataceae , Rosa Bengala/farmacología
20.
Nanotechnology ; 21(33): 335603, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20657050

RESUMEN

Contrast agents are currently used in a variety of diagnostic imaging techniques, including computer tomography for early cancer detection. Radiopaque nanoparticles have recently been proposed as an alternative method to traditional contrast agents that may allow for long-term image tracking. The aim of this study was the preparation and characterization of aqueous suspensions of radiopaque nanoparticles made of poly(allyl amine) derivatives. Poly(allylamine) (PA) was modified by grafting either 4-iodobenzoyl chloride or 2,3,5-triiodobenzoyl chloride to make the polymer x-ray visible. Nanoparticles of the modified PA were prepared by the nanoprecipitation method and purified with respect to residual organic solvents. Stable suspensions of spherical particles of sub-micronic diameter were characterized by dynamic light scattering and transmission electron microscopy. In addition, the 4.5 wt% suspensions of nanoparticles displayed an x-ray visibility ranging between 185 and 235 HU. The non-clustering ability of the novel PA radiopaque nanoparticles suggests they could be injected via a catheter without clogging or sedimentation.


Asunto(s)
Medios de Contraste , Nanopartículas/química , Poliaminas/química , Cloruros/química , Medios de Contraste/síntesis química , Medios de Contraste/química , Yodobenzoatos/química , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Tamaño de la Partícula , Ácidos Triyodobenzoicos/química , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA