Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci ; 32(4): 1383-94, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22279223

RESUMEN

The astrocyte brain fatty acid binding protein (Fabp7) has previously been shown to have a coordinated diurnal regulation of mRNA and protein throughout mouse brain, and an age-dependent decline in protein expression within synaptoneurosomal fractions. Mechanisms that control time-of-day changes in expression and trafficking Fabp7 to the perisynaptic process are not known. In this study, we confirmed an enrichment of Fabp7 mRNA and protein in the astrocytic perisynaptic compartment, and observed a diurnal change in the intracellular distribution of Fabp7 mRNA in molecular layers of hippocampus. Northern blotting revealed a coordinated time-of-day-dependent oscillation for the Fabp7 mRNA poly(A) tail throughout murine brain. Cytoplasmic polyadenylation element-binding protein 1 (CPEB1) regulates subcellular trafficking and translation of synaptic plasticity-related mRNAs. Here we show that Fabp7 mRNA coimmunoprecipitated with CPEB1 from primary mouse astrocyte extracts, and its 3'UTR contains phylogenetically conserved cytoplasmic polyadenylation elements (CPEs) capable of regulating translation of reporter mRNAs during Xenopus oocyte maturation. Given that Fabp7 expression is confined to astrocytes and neural progenitors in adult mouse brain, the synchronized cycling pattern of Fabp7 mRNA is a novel discovery among known CPE-regulated transcripts. These results implicate circadian, sleep, and/or metabolic control of CPEB-mediated subcellular trafficking and localized translation of Fabp7 mRNA in the tripartite synapse of mammalian brain.


Asunto(s)
Astrocitos/metabolismo , Ritmo Circadiano/fisiología , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero/metabolismo , Sinapsis/metabolismo , Animales , Secuencia de Bases , Células Cultivadas , Proteína de Unión a los Ácidos Grasos 7 , Femenino , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Poliadenilación/fisiología , Transporte de Proteínas/fisiología , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/fisiología , Sinapsis/fisiología , Xenopus
2.
Development ; 136(23): 4055-63, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19906872

RESUMEN

The directed differentiation of forebrain neuronal types from human embryonic stem cells (hESCs) has not been achieved. Here, we show that hESCs differentiate to telencephalic progenitors with a predominantly dorsal identity in a chemically defined medium without known morphogens. This is attributed to endogenous Wnt signaling, which upregulates the truncated form of GLI3, a repressor of sonic hedgehog (SHH). A high concentration of SHH, or the inhibition of Wnt by dickkopf 1 (DKK1) together with a low concentration of SHH, almost completely converts the primitive dorsal precursors to ventral progenitors, which is partially achieved through both downregulation of the truncated GLI3 and upregulation of full-length GLI3 expression. These dorsal and ventral telencephalic progenitors differentiate to functional glutamatergic and GABAergic neurons, respectively. Thus, although hESCs generate dorsal telencephalic cells, as opposed to ventral progenitors in other vertebrates, in the absence of exogenous morphogens, human cells use a similar molecular mechanism to control the dorsal versus ventral fate. The coordination of Wnt and SHH signaling through GLI3 represents a novel mechanism that regulates ventral-dorsal patterning in the development of forebrain neuronal subtypes.


Asunto(s)
Células Madre Embrionarias/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal/fisiología , Telencéfalo/embriología , Proteínas Wnt/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Células Cultivadas , Medios de Cultivo Condicionados/química , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Concentración de Iones de Hidrógeno , Inmunohistoquímica , Neuronas/citología , Neuronas/metabolismo , Telencéfalo/citología , Telencéfalo/metabolismo , Factores de Tiempo , Proteínas Wnt/genética
3.
Stem Cells ; 29(12): 1975-82, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21997878

RESUMEN

Fibroblast growth factor (FGF) signaling and PAX6 transcription are required for neuroectoderm specification of human embryonic stem cells (hESCs). In this study, we asked how FGF signaling leads to PAX6 transcription and neuroectoderm specification from hESCs. Under a chemically defined medium, FGF inhibition blocked phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2) with a significant reduction of PAX6-expressing neuroepithelia, indicating that FGF regulates neural induction through ERK1/2 activation. Activation of FGF-ERK1/2 pathway was necessary for the activity of poly(ADP-ribose) polymerase-1 (PARP-1), a conserved nuclear protein catalyzing polymerization of ADP-ribose units. Pharmacological inhibition and genetic ablation of PARP-1 inhibited neural induction from hESCs, suggesting that FGF-ERK1/2 signal pathway regulates neuroectoderm specification through regulating PARP-1 activity. Furthermore, FGF-ERK1/2-PARP-1 cascade regulated the expression of PAX6, a transcription determinant of human neuroectoderm. Together, we propose that FGF regulates hESC neural specification through the ERK1/2-PARP-1 signaling pathway.


Asunto(s)
Proteínas del Ojo/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Homeodominio/metabolismo , Sistema de Señalización de MAP Quinasas , Placa Neural/citología , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Butadienos/farmacología , Diferenciación Celular , Células Cultivadas , Medios de Cultivo/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Activación Enzimática , Proteínas del Ojo/genética , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Placa Neural/efectos de los fármacos , Placa Neural/metabolismo , Nitrilos/farmacología , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Fenantrenos/farmacología , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Pirroles/farmacología , Proteínas Represoras/genética
4.
Stem Cells ; 27(8): 1741-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19544434

RESUMEN

Inhibition of bone morphogenetic protein (BMP) signaling is required for vertebrate neural induction, and fibroblast growth factors (FGFs) may affect neural induction through phosphorylation at the linker region of Smad1, thus regulating BMP signaling. Here we show that human embryonic stem cells efficiently convert to neuroepithelial cells in the absence of BMP antagonists, or even when exposed to high concentrations of exogenous BMP4. Molecular and functional analyses revealed multiple levels of endogenous BMP signaling inhibition that may account for the efficient neural differentiation. Blocking FGF signaling inhibited neural induction, but did not alter the phosphorylation of the linker region of Smad1, suggesting that FGF enhances human neural specification independently of BMP signaling.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Células Madre Embrionarias/metabolismo , Proteínas del Ojo/biosíntesis , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Técnica del Anticuerpo Fluorescente , Proteínas de Homeodominio/biosíntesis , Humanos , Inmunohistoquímica , Neuronas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/biosíntesis , Fosforilación , Proteínas Represoras/biosíntesis , Transducción de Señal/efectos de los fármacos , Proteína Smad1/antagonistas & inhibidores , Proteína Smad1/metabolismo
5.
Stem Cells ; 26(4): 886-93, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18238853

RESUMEN

Specification of distinct cell types from human embryonic stem cells (hESCs) is key to the potential application of these naïve pluripotent cells in regenerative medicine. Determination of the nontarget differentiated populations, which is lacking in the field, is also crucial. Here, we show an efficient differentiation of motor neurons ( approximately 50%) by a simple sequential application of retinoid acid and sonic hedgehog (SHH) in a chemically defined suspension culture. We also discovered that purmorphamine, a small molecule that activates the SHH pathway, could replace SHH for the generation of motor neurons. Immunocytochemical characterization indicated that cells differentiated from hESCs were nearly completely restricted to the ventral spinal progenitor fate (NKX2.2+, Irx3+, and Pax7-), with the exception of motor neurons (HB9+) and their progenitors (Olig2+). Thus, the directed neural differentiation system with small molecules, even without further purification, will facilitate basic and translational studies using human motoneurons at a minimal cost.


Asunto(s)
Diferenciación Celular , Evolución Molecular Dirigida/métodos , Células Madre Embrionarias/citología , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/fisiología , Proteínas Hedgehog/biosíntesis , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiología , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Humanos , Ratones , Morfolinas/farmacología , Neuronas Motoras/efectos de los fármacos , Proteínas Nucleares , Purinas/farmacología , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/fisiología , Factores de Transcripción , Tretinoina/farmacología , Tretinoina/fisiología
6.
Cell Stem Cell ; 7(1): 90-100, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20621053

RESUMEN

The transcriptional regulation of neuroectoderm (NE) specification is unknown. Here we show that Pax6 is uniformly expressed in early NE cells of human fetuses and those differentiated from human embryonic stem cells (hESCs). This is in contrast to the later expression of Pax6 in restricted mouse brain regions. Knockdown of Pax6 blocks NE specification from hESCs. Overexpression of either Pax6a or Pax6b, but not Pax6triangle upPD, triggers hESC differentiation. However, only Pax6a converts hESCs to NE. In contrast, neither loss nor gain of function of Pax6 affects mouse NE specification. Both Pax6a and Pax6b bind to pluripotent gene promoters but only Pax6a binds to NE genes during human NE specification. These findings indicate that Pax6 is a transcriptional determinant of the human NE and suggest that Pax6a and Pax6b coordinate with each other in determining the transition from pluripotency to the NE fate in human by differentially targeting pluripotent and NE genes.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Placa Neural/citología , Placa Neural/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Humanos , Técnicas In Vitro , Ratones , Ratones SCID , Modelos Biológicos , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Teratoma/patología
7.
PLoS One ; 3(2): e1631, 2008 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-18286188

RESUMEN

Brain fatty acid binding protein (Fabp7), which is important in early nervous system development, is expressed in astrocytes and neuronal cell precursors in mature brain. We report here that levels of Fabp7 mRNA in adult murine brain change over a 24 hour period. Unlike Fabp5, a fatty acid binding protein that is expressed widely in various cell types within brain, RNA analysis revealed that Fabp7 mRNA levels were elevated during the light period and lower during dark in brain regions involved in sleep and activity mechanisms. This pattern of Fabp7 mRNA expression was confirmed using in situ hybridization and found to occur throughout the entire brain. Changes in the intracellular distribution of Fabp7 mRNA were also evident over a 24 hour period. Diurnal changes in Fabp7, however, were not found in postnatal day 6 brain, when astrocytes are not yet mature. In contrast, granule cell precursors of the subgranular zone of adult hippocampus did undergo diurnal changes in Fabp7 expression. These changes paralleled oscillations in Fabp7 mRNA throughout the brain suggesting that cell-coordinated signals likely control brain-wide Fabp7 mRNA expression. Immunoblots revealed that Fabp7 protein levels also underwent diurnal changes in abundance, with peak levels occurring in the dark period. Of clock or clock-regulated genes, the synchronized, global cycling pattern of Fabp7 expression is unique and implicates glial cells in the response or modulation of activity and/or circadian rhythms.


Asunto(s)
Astrocitos/metabolismo , Ritmo Circadiano , Proteínas de Unión a Ácidos Grasos/genética , Regulación del Desarrollo de la Expresión Génica , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/genética , Células Madre/metabolismo , Animales , Astrocitos/citología , Proteína de Unión a los Ácidos Grasos 7 , Hipocampo/citología , Ratones , Ratones Endogámicos C57BL , Neuronas , ARN Mensajero/análisis
8.
Stem Cells ; 25(6): 1511-20, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17332508

RESUMEN

Understanding neuroectoderm formation and subsequent diversification to functional neural subtypes remains elusive. We show here that human embryonic stem cells (hESCs) differentiate to primitive neuroectoderm after 8-10 days. At this stage, cells uniformly exhibit columnar morphology and express neural markers, including anterior but not posterior homeodomain proteins. The anterior identity of these cells develops regardless of morphogens present during initial neuroectoderm specification. This anterior phenotype can be maintained or transformed to a caudal fate with specific morphogens over the next week, when cells become definitive neuroepithelia, marked by neural tube-like structures with distinct adhesion molecule expression, Sox1 expression, and a resistance to additional patterning signals. Thus, primitive neuroepithelia represents the earliest neural cells that possess the potential to differentiate to regionally specific neural progenitors. This finding offers insights into early human brain development and lays a foundation for generating neural cells with correct positional and transmitter profiles. Disclosure of potential conflicts of interest is found at the end of this article.


Asunto(s)
Diferenciación Celular , Ectodermo/citología , Células Madre Embrionarias/citología , Neuronas/citología , Animales , Biomarcadores/metabolismo , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Epiteliales/citología , Perfilación de la Expresión Génica , Humanos , Macaca mulatta , Modelos Biológicos , Neuronas/metabolismo , Factores de Tiempo
9.
J Neurochem ; 94(5): 1411-9, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16001966

RESUMEN

In the mammalian brain, sleep and wakefulness are associated with widespread changes in gene expression. Sleep in fruit flies shares many features with mammalian sleep, but it is currently unknown to what extent behavioral states affect gene expression in Drosophila. To find out, we performed a comprehensive microarray analysis of gene expression in spontaneously awake, sleep-deprived and sleeping flies. Fly heads were collected at 4 am, after 8 h of spontaneous sleep or sleep deprivation, and at 4 pm, after 8 h of spontaneous wakefulness. As in rats, we found that behavioral state and time of day affect Drosophila gene expression to a comparable extent. As in rats, transcripts with higher expression in wakefulness and in sleep belong to different functional categories, and in several cases these groups overlap with those previously identified in rats. Wakefulness-related genes code for transcription factors and for proteins involved in the stress response, immune response, glutamatergic transmission, and carbohydrate metabolism. Sleep-related transcripts include the glial gene anachronism and several genes involved in lipid metabolism. Finally, the expression of many wakefulness-related and sleep-related Drosophila transcripts is also modulated by the time of day, suggesting an interaction at the molecular level between circadian and homeostatic mechanism of sleep regulation.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/fisiología , Expresión Génica/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Drosophila/genética , Femenino , Cabeza , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Factores de Transcripción/genética
10.
EMBO J ; 23(2): 386-95, 2004 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-14726953

RESUMEN

The two iron regulatory proteins IRP1 and IRP2 bind to transcripts of ferritin, transferrin receptor and other target genes to control the expression of iron metabolism proteins at the post-transcriptional level. Here we compare the effects of genetic ablation of IRP1 to IRP2 in mice. IRP1-/- mice misregulate iron metabolism only in the kidney and brown fat, two tissues in which the endogenous expression level of IRP1 greatly exceeds that of IRP2, whereas IRP2-/- mice misregulate the expression of target proteins in all tissues. Surprisingly, the RNA-binding activity of IRP1 does not increase in animals on a low-iron diet that is sufficient to activate IRP2. In animal tissues, most of the bifunctional IRP1 is in the form of cytosolic aconitase rather than an RNA-binding protein. Our findings indicate that the small RNA-binding fraction of IRP1, which is insensitive to cellular iron status, contributes to basal mammalian iron homeostasis, whereas IRP2 is sensitive to iron status and can compensate for the loss of IRP1 by increasing its binding activity. Thus, IRP2 dominates post-transcriptional regulation of iron metabolism in mammals.


Asunto(s)
Proteína 1 Reguladora de Hierro/fisiología , Proteína 2 Reguladora de Hierro/fisiología , Hierro/metabolismo , Animales , Fraccionamiento Celular , Cerebelo/metabolismo , Ferritinas/metabolismo , Marcación de Gen , Homeostasis , Hibridación in Situ , Deficiencias de Hierro , Proteína 1 Reguladora de Hierro/genética , Proteína 2 Reguladora de Hierro/genética , Ratones , Ratones Noqueados , ARN Mensajero/análisis , Elementos de Respuesta , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA