Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(2): e1012008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38354186

RESUMEN

Leucine-rich repeat (LRR) proteins are commonly involved in innate immunity of animals and plants, including for pattern recognition of pathogen-derived elicitors. The Anopheles secreted LRR proteins APL1C and LRIM1 are required for malaria ookinete killing in conjunction with the complement-like TEP1 protein. However, the mechanism of parasite immune recognition by the mosquito remains unclear, although it is known that TEP1 lacks inherent binding specificity. Here, we find that APL1C and LRIM1 bind specifically to Plasmodium berghei ookinetes, even after depletion of TEP1 transcript and protein, consistent with a role for the LRR proteins in pathogen recognition. Moreover, APL1C does not bind to ookinetes of the human malaria parasite Plasmodium falciparum, and is not required for killing of this parasite, which correlates LRR binding specificity and immune protection. Most of the live P. berghei ookinetes that migrated into the extracellular space exposed to mosquito hemolymph, and almost all dead ookinetes, are bound by APL1C, thus associating LRR protein binding with parasite killing. We also find that APL1C binds to the surface of P. berghei sporozoites released from oocysts into the mosquito hemocoel and forms a potent barrier limiting salivary gland invasion and mosquito infectivity. Pathogen binding by APL1C provides the first functional explanation for the long-known requirement of APL1C for P. berghei ookinete killing in the mosquito midgut. We propose that secreted mosquito LRR proteins are required for pathogen discrimination and orientation of immune effector activity, potentially as functional counterparts of the immunoglobulin-based receptors used by vertebrates for antigen recognition.


Asunto(s)
Anopheles , Malaria , Animales , Humanos , Proteínas Repetidas Ricas en Leucina , Anopheles/parasitología , Esporozoítos/metabolismo , Proteínas/metabolismo , Plasmodium berghei/metabolismo
2.
Blood ; 136(12): 1381-1393, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32589714

RESUMEN

Plasmodium falciparum gametocytes, the sexual stage responsible for malaria parasite transmission from humans to mosquitoes, are key targets for malaria elimination. Immature gametocytes develop in the human bone marrow parenchyma, where they accumulate around erythroblastic islands. Notably though, the interactions between gametocytes and this hematopoietic niche have not been investigated. Here, we identify late erythroblasts as a new host cell for P falciparum sexual stages and show that gametocytes can fully develop inside these nucleated cells in vitro and in vivo, leading to infectious mature gametocytes within reticulocytes. Strikingly, we found that infection of erythroblasts by gametocytes and parasite-derived extracellular vesicles delay erythroid differentiation, thereby allowing gametocyte maturation to coincide with the release of their host cell from the bone marrow. Taken together, our findings highlight new mechanisms that are pivotal for the maintenance of immature gametocytes in the bone marrow and provide further insights on how Plasmodium parasites interfere with erythropoiesis and contribute to anemia in malaria patients.


Asunto(s)
Eritroblastos/parasitología , Eritropoyesis , Interacciones Huésped-Parásitos , Malaria Falciparum/fisiopatología , Plasmodium falciparum/fisiología , Adulto , Médula Ósea/parasitología , Médula Ósea/fisiopatología , Células Cultivadas , Eritroblastos/patología , Femenino , Humanos , Malaria Falciparum/parasitología , Adulto Joven
3.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36361552

RESUMEN

One of the major pathophysiologies of malaria is the development of anemia. Although hemolysis and splenic clearance are well described as causes of malarial anemia, abnormal erythropoiesis has been observed in malaria patients and may contribute significantly to anemia. The interaction between inadequate erythropoiesis and Plasmodium parasite infection, which partly occurs in the bone marrow, has been poorly investigated to date. However, recent findings may provide new insights. This review outlines clinical and experimental studies describing different aspects of ineffective erythropoiesis and dyserythropoiesis observed in malaria patients and in animal or in vitro models. We also highlight the various human and parasite factors leading to erythropoiesis disorders and discuss the impact that Plasmodium parasites may have on the suppression of erythropoiesis.


Asunto(s)
Anemia , Malaria , Plasmodium , Animales , Humanos , Eritropoyesis/fisiología , Malaria/complicaciones , Malaria/parasitología , Anemia/etiología , Médula Ósea
4.
Curr Opin Hematol ; 28(3): 158-163, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33631784

RESUMEN

PURPOSE OF REVIEW: The current review outlines recent discoveries on the infection of erythroid cells by Plasmodium parasites, focusing on the molecular interactions governing the tropism of parasites for their host cell and the implications of this tropism for parasite biology and erythroid cell maturation. RECENT FINDINGS: Although most studies about the interactions of Plasmodium parasites and their host cell focused on the deadliest human malaria parasite, Plasmodium falciparum, and the erythrocyte, there is increasing evidence that several Plasmodium species, including P. falciparum, also develop within erythroid precursors. These interactions likely modify the remodeling of the host cell by the parasite and affect the maturation of erythroblast and reticulocytes. SUMMARY: A better understanding of the remodeling of immature erythroid cells by Plasmodium parasites will have important implications for the development of antimalarial drugs or vaccines. In addition, deciphering how Plasmodium parasites interfere with erythropoiesis will provide new insights on how these parasites contribute to anemia in malaria patients.


Asunto(s)
Eritrocitos/parasitología , Interacciones Huésped-Parásitos , Malaria/sangre , Malaria/parasitología , Plasmodium/fisiología , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Diferenciación Celular , Eritroblastos/metabolismo , Eritroblastos/parasitología , Eritrocitos/efectos de los fármacos , Eritrocitos/inmunología , Eritrocitos/metabolismo , Eritropoyesis , Interacciones Huésped-Parásitos/inmunología , Humanos , Malaria/tratamiento farmacológico , Malaria/inmunología , Vacunas contra la Malaria/inmunología , Reticulocitos/metabolismo , Reticulocitos/parasitología
5.
Am J Hematol ; 96(4): 480-492, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476437

RESUMEN

Efficient erythropoiesis relies on the expression of the transferrin receptor type 2 (TFR2). In erythroid precursors, TFR2 facilitates the export of the erythropoietin receptor (EPOR) to cell surface, which ensures the survival and proliferation of erythroblasts. Although TFR2 has a crucial role in erythropoiesis regulation, its mechanism of action remains to be clarified. To understand its role better, we aimed at identifying its protein partners by mass-spectrometry after immunoprecipitation in erythroid cells. Here we report the kinase MRCKα (myotonic dystrophy kinase-related CDC42-binding kinase α) as a new partner of both TFR2 and EPOR in erythroblasts. We show that MRCKα is co-expressed with TFR2, and TFR1 during terminal differentiation and regulates the internalization of the two types of transferrin receptors. The knockdown of MRCKα by shRNA in human primary erythroblasts leads to a decreased cell surface expression of both TFR1 and TFR2, an increased cell-surface expression of EPOR, and a delayed differentiation. Additionally, knockout of Mrckα in the murine MEDEP cells also leads to a striking delay in erythropoiesis, showcasing the importance of this kinase in both species. Our data highlight the importance of MRCKα in the regulation of erythropoiesis.


Asunto(s)
Eritropoyesis/fisiología , Proteína Quinasa de Distrofia Miotónica/fisiología , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Endocitosis , Eritroblastos/citología , Eritroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Hierro/metabolismo , Ratones , Proteína Quinasa de Distrofia Miotónica/aislamiento & purificación , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Receptores de Eritropoyetina/metabolismo , Receptores de Transferrina/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
7.
Blood ; 127(24): e42-53, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27136945

RESUMEN

Deformability of Plasmodium falciparum gametocyte-infected erythrocytes (GIEs) allows them to persist for several days in blood circulation and to ensure transmission to mosquitoes. Here, we investigate the mechanism by which the parasite proteins STEVOR (SubTElomeric Variable Open Reading frame) exert changes on GIE deformability. Using the microsphiltration method, immunoprecipitation, and mass spectrometry, we produce evidence that GIE stiffness is dependent on the cytoplasmic domain of STEVOR that interacts with ankyrin complex at the erythrocyte skeleton. Moreover, we show that GIE deformability is regulated by protein kinase A (PKA)-mediated phosphorylation of the STEVOR C-terminal domain at a specific serine residue (S324). Finally, we show that the increase of GIE stiffness induced by sildenafil (Viagra) is dependent on STEVOR phosphorylation status and on another independent mechanism. These data provide new insights into mechanisms by which phosphodiesterase inhibitors may block malaria parasite transmission.


Asunto(s)
Antígenos de Protozoos/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Deformación Eritrocítica , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Plasmodium falciparum , Animales , Células Cultivadas , Interacciones Huésped-Parásitos , Humanos , Malaria Falciparum/sangre , Fosforilación , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo
8.
PLoS Pathog ; 11(12): e1005306, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26633695

RESUMEN

Nucleotide variation patterns across species are shaped by the processes of natural selection, including exposure to environmental pathogens. We examined patterns of genetic variation in two sister species, Anopheles gambiae and Anopheles coluzzii, both efficient natural vectors of human malaria in West Africa. We used the differentiation signature displayed by a known coordinate selective sweep of immune genes APL1 and TEP1 in A. coluzzii to design a population genetic screen trained on the sweep, classified a panel of 26 potential immune genes for concordance with the signature, and functionally tested their immune phenotypes. The screen results were strongly predictive for genes with protective immune phenotypes: genes meeting the screen criteria were significantly more likely to display a functional phenotype against malaria infection than genes not meeting the criteria (p = 0.0005). Thus, an evolution-based screen can efficiently prioritize candidate genes for labor-intensive downstream functional testing, and safely allow the elimination of genes not meeting the screen criteria. The suite of immune genes with characteristics similar to the APL1-TEP1 selective sweep appears to be more widespread in the A. coluzzii genome than previously recognized. The immune gene differentiation may be a consequence of adaptation of A. coluzzii to new pathogens encountered in its niche expansion during the separation from A. gambiae, although the role, if any of natural selection by Plasmodium is unknown. Application of the screen allowed identification of new functional immune factors, and assignment of new functions to known factors. We describe biochemical binding interactions between immune proteins that underlie functional activity for malaria infection, which highlights the interplay between pathogen specificity and the structure of immune complexes. We also find that most malaria-protective immune factors display phenotypes for either human or rodent malaria, with broad specificity a rarity.


Asunto(s)
Anopheles/genética , Anopheles/inmunología , Insectos Vectores/genética , Insectos Vectores/inmunología , Animales , Secuencia de Bases , Evolución Molecular , Genes de Insecto/inmunología , Variación Genética , Proteínas de Insectos/genética , Proteínas de Insectos/inmunología , Malaria/transmisión , Ratones , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa
9.
PLoS Pathog ; 11(5): e1004815, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25951195

RESUMEN

Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites.


Asunto(s)
Deformación Eritrocítica/fisiología , Eritrocitos/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Transducción de Señal , Animales , Culicidae , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Malaria Falciparum/transmisión
10.
Malar J ; 15: 248, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27129434

RESUMEN

BACKGROUND: The asexual intra-erythrocytic multiplication of the malaria parasite Plasmodium falciparum is regulated by various molecular mechanisms. In eukaryotic cells, protein kinases are known to play key roles in cell cycle regulation and signaling pathways. The activity of cAMP-dependent protein kinase (PKA) depends on A-kinase anchoring proteins (AKAPs) through protein interactions. While several components of the cAMP dependent pathway-including the PKA catalytic and regulatory subunits-have been characterized in P. falciparum, whether AKAPs are involved in this pathway remains unclear. Here, PfAKAL, an open reading frame of a potential AKAP-like protein in the P. falciparum genome was identified, and its protein partners and putative cellular functions characterized. METHODS: The expression of PfAKAL throughout the erythrocytic cycle of the 3D7 strain was assessed by RT-qPCR and the presence of the corresponding protein by immunofluorescence assays. In order to study physical interactions between PfAKAL and other proteins, pull down experiments were performed using a recombinant PfAKAL protein and parasite protein extracts, or with recombinant proteins. These interactions were also tested by combining biochemical and proteomic approaches. As phosphorylation could be involved in the regulation of protein complexes, both PfAKAL and Pf14-3-3I phosphorylation was studied using a radiolabel kinase activity assay. Finally, to identify a potential function of the protein, PfAKAL sequence was aligned and structurally modeled, revealing a conserved nucleotide-binding pocket; confirmed by qualitative nucleotide binding experiments. RESULTS: PfAKAL is the first AKAP-like protein in P. falciparum to be identified, and shares 23 % sequence identity with the central domain of human AKAP18δ. PfAKAL is expressed in mature asexual stages, merozoites and gametocytes. In spite of homology to AKAP18, biochemical and immunochemical analyses demonstrated that PfAKAL does not interact directly with the P. falciparum PKA regulatory subunit (PfPKA-R), but instead binds and colocalizes with Pf14-3-3I, which in turn interacts with PfPKA-R. In vivo, these different interactions could be regulated by phosphorylation, as PfPKA-R and Pf14-3-3I, but not PfAKAL, are phosphorylated in vitro by PKA. Interestingly, PfAKAL binds nucleotides such as AMP and cAMP, suggesting that this protein may be involved in the AMP-activated protein kinase (AMPK) pathway, or associated with phosphodiesterase activities. CONCLUSION: PfAKAL is an atypical AKAP that shares common features with human AKAP18, such as nucleotides binding. The interaction of PfAKAL with PfPKA-R could be indirectly mediated through a join interaction with Pf14-3-3I. Therefore, PfPKA localization could not depend on PfAKAL, but rather involves other partners.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Secuencia de Aminoácidos , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Transducción de Señal
11.
Antimicrob Agents Chemother ; 59(7): 4206-14, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25941228

RESUMEN

Plasmodium falciparum is transmitted from humans to Anopheles mosquito vectors via the sexual erythrocytic forms termed gametocytes. Erythrocyte filtration through microsphere layers (microsphiltration) had shown that circulating gametocytes are deformable. Compounds reducing gametocyte deformability would induce their splenic clearance, thus removing them from the blood circulation and blocking malaria transmission. The hand-made, single-sample prototype for microsphiltration was miniaturized to a 96-well microtiter plate format, and gametocyte retention in the microsphere filters was quantified by high-content imaging. The stiffening activity of 40 pharmacological compounds was assessed in microtiter plates, using a small molecule (calyculin) as a positive control. The stiffening activity of calyculin was assessed in spleen-mimetic microfluidic chips and in macrophage-depleted mice. Marked mechanical retention (80% to 90%) of mature gametocytes was obtained in microplates following exposure to calyculin at concentrations with no effect on parasite viability. Of the 40 compounds tested, including 20 antimalarials, only 5 endoperoxides significantly increased gametocyte retention (1.5- to 2.5-fold; 24 h of exposure at 1 µM). Mature gametocytes exposed to calyculin accumulated in microfluidic chips and were cleared from the circulation of macrophage-depleted mice as rapidly as heat-stiffened erythrocytes, thus confirming results obtained using the microsphiltration assay. An automated miniaturized approach to select compounds for their gametocyte-stiffening effect has been established. Stiffening induces gametocyte clearance both in vitro and in vivo. Based on physiologically validated tools, this screening cascade can identify novel compounds and uncover new targets to block malaria transmission. Innovative applications in hematology are also envisioned.


Asunto(s)
Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Plasmodium falciparum/crecimiento & desarrollo , Bazo/parasitología , Animales , Antimaláricos/farmacología , Automatización , Inhibidores Enzimáticos/farmacología , Recuento de Eritrocitos , Eritrocitos/parasitología , Filtración , Citometría de Flujo , Procesamiento de Imagen Asistido por Computador , Macrófagos/parasitología , Malaria Falciparum/prevención & control , Toxinas Marinas , Ratones , Técnicas Analíticas Microfluídicas , Microesferas , Modelos Biológicos , Oxazoles/farmacología , Recuento de Huevos de Parásitos , Bazo/efectos de los fármacos
12.
Blood ; 119(2): e1-8, 2012 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-22106347

RESUMEN

Infection of erythrocytes with the human malaria parasite, Plasmodium falciparum, results in dramatic changes to the host cell structure and morphology. The predicted functional localization of the STEVOR proteins at the erythrocyte surface suggests that they may be involved in parasite-induced modifications of the erythrocyte membrane during parasite development. To address the biologic function of STEVOR proteins, we subjected a panel of stevor transgenic parasites and wild-type clonal lines exhibiting different expression levels for stevor genes to functional assays exploring parasite-induced modifications of the erythrocyte membrane. Using this approach, we show that stevor expression impacts deformability of the erythrocyte membrane. This process may facilitate parasite sequestration in deep tissue vasculature.


Asunto(s)
Antígenos de Protozoos/metabolismo , Membrana Eritrocítica/patología , Eritrocitos/patología , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Antígenos de Protozoos/genética , Células Cultivadas , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitología , Eritrocitos/metabolismo , Eritrocitos/parasitología , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Plasmodium falciparum/aislamiento & purificación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Blood ; 119(24): e172-80, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22517905

RESUMEN

Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature gametocyte-infected erythrocytes (GIEs) sequester in host tissues. Only mature stage GIEs circulate in the peripheral blood, available to uptake by the Anopheles vector. Mechanisms underlying GIE sequestration and release in circulation are virtually unknown. We show here that mature GIEs are more deformable than immature stages using ektacytometry and microsphiltration methods, and that a switch in cellular deformability in the transition from immature to mature gametocytes is accompanied by the deassociation of parasite-derived STEVOR proteins from the infected erythrocyte membrane. We hypothesize that mechanical retention contributes to sequestration of immature GIEs and that regained deformability of mature gametocytes is associated with their release in the bloodstream and ability to circulate. These processes are proposed to play a key role in P falciparum gametocyte development in the host and to represent novel and unconventional targets for interfering with parasite transmission.


Asunto(s)
Deformación Eritrocítica/fisiología , Eritrocitos/parasitología , Estadios del Ciclo de Vida , Malaria Falciparum/sangre , Malaria Falciparum/transmisión , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/fisiología , Adulto , Animales , Antígenos de Protozoos/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/ultraestructura , Transporte de Proteínas
14.
Microbes Infect ; 25(5): 105102, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36708871

RESUMEN

To persist in the blood circulation and to be available for mosquitoes, Plasmodium falciparum gametocytes modify the deformability and the permeability of their erythrocyte host via cyclic AMP (cAMP) signaling pathway. Cyclic nucleotide levels are tightly controlled by phosphodiesterases (PDE), however in Plasmodium these proteins are poorly characterized. Here, we characterize the P. falciparum phosphodiesterase delta (PfPDEδ) and we investigate its role in the cAMP signaling-mediated regulation of gametocyte-infected erythrocyte mechanical properties. Our results revealed that PfPDEδ is a dual-function enzyme capable of hydrolyzing both cAMP and cGMP, with a higher affinity for cAMP. We also show that PfPDEδ is the most expressed PDE in mature gametocytes and we propose that it is located in parasitophorous vacuole at the interface between the host cell and the parasite. We conclude that PfPDEδ is the master regulator of both the increase in deformability and the inhibition of channel activity in mature gametocyte stages, and may therefore play a crucial role in the persistence of mature gametocytes in the bloodstream.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Animales , Plasmodium falciparum/fisiología , Hidrolasas Diéster Fosfóricas , Malaria Falciparum/parasitología , Eritrocitos/parasitología , Transducción de Señal
15.
Front Cell Infect Microbiol ; 12: 883759, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694548

RESUMEN

The persistence of erythrocytes infected with Plasmodium falciparum gametocytes in the bloodstream is closely related to the modulation of their mechanical properties. New drugs that increase the stiffness of infected erythrocytes may thus represent a novel approach to block malaria parasite transmission. The phosphodiesterase inhibitor tadalafil has been shown to impair the ability of infected erythrocytes to circulate in an in vitro model for splenic retention. Here, we used a humanized mouse model to address in vivo the effect of tadalafil on the circulation kinetics of mature gametocyte-infected erythrocytes. We show that stiff immature gametocyte-infected erythrocytes are retained in the spleen of humanized mice at rates comparable to that of the in vitro model. Accordingly, tadalafil-induced stiffening of mature gametocyte-infected erythrocytes impairs their circulation in the bloodstream and triggers their retention by the spleen. These in vivo results validate that tadalafil is a novel drug lead potentially capable of blocking malaria parasite transmission by targeting GIE mechanical properties.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Animales , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Ratones , Inhibidores de Fosfodiesterasa , Bazo , Tadalafilo/farmacología
16.
Acta Pharm Sin B ; 12(4): 2089-2102, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35847505

RESUMEN

Red blood cells (RBCs) can act as carriers for therapeutic agents and can substantially improve the safety, pharmacokinetics, and pharmacodynamics of many drugs. Maintaining RBCs integrity and lifespan is important for the efficacy of RBCs as drug carrier. We investigated the impact of drug encapsulation by hypotonic dialysis on RBCs physiology and integrity. Several parameters were compared between processed RBCs loaded with l-asparaginase ("eryaspase"), processed RBCs without drug and non-processed RBCs. Processed RBCs were less hydrated and displayed a reduction of intracellular content. We observed a change in the metabolomic but not in the proteomic profile of processed RBCs. Encapsulation process caused moderate morphological changes and was accompanied by an increase of RBCs-derived Extracellular Vesicles release. Despite a decrease in deformability, processed RBCs were not mechanically retained in a spleen-mimicking device and had increased surface-to-volume ratio and osmotic resistance. Processed RBCs half-life was not significantly affected in a mouse model and our previous phase 1 clinical study showed that encapsulation of asparaginase in RBCs prolonged its in vivo half-life compared to free forms. Our study demonstrated that encapsulation by hypotonic dialysis may affect certain characteristics of RBCs but does not significantly affect the in vivo longevity of RBCs or their drug carrier function.

17.
Pharmaceutics ; 14(2)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35214104

RESUMEN

The alkaloid tazopsine 1 was introduced in the late 2000s as a novel antiplasmodial hit compound active against Plasmodium falciparum hepatic stages, with the potential to develop prophylactic drugs based on this novel chemical scaffold. However, the structural determinants of tazopsine 1 bioactivity, together with the exact definition of the pharmacophore, remained elusive, impeding further development. We found that the antitussive drug dextromethorphan (DXM) 3, although lacking the complex pattern of stereospecific functionalization of the natural hit, was harboring significant antiplasmodial activity in vitro despite suboptimal prophylactic activity in a murine model of malaria, precluding its direct repurposing against the disease. The targeted N-alkylation of nor-DXM 15 produced a small library of analogues with greatly improved activity over DXM 3 against P. falciparum asexual stages. Amongst these, N-2'-pyrrolylmethyl-nor-DXM 16i showed a 2- to 36-fold superior inhibitory potency compared to tazopsine 1 and DXM 3 against P. falciparum liver and blood stages, with respectively 760 ± 130 nM and 2.1 ± 0.4 µM IC50 values, as well as liver/blood phase selectivity of 2.8. Furthermore, cpd. 16i showed a 5- to 8-fold increase in activity relative to DXM 3 against P. falciparum stages I-II and V gametocytes, with 18.5 µM and 13.2 µM IC50 values, respectively. Cpd. 16i can thus be considered a promising novel hit compound against malaria in the ent-morphinan series with putative pan cycle activity, paving the way for further therapeutic development (e.g., investigation of its prophylactic activity in vivo).

18.
Antimicrob Agents Chemother ; 55(6): 2576-84, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21464256

RESUMEN

Due to their rapid, potent action on young and mature intraerythrocytic stages, artemisinin derivatives are central to drug combination therapies for Plasmodium falciparum malaria. However, the evidence for emerging parasite resistance/tolerance to artemisinins in southeast Asia is of great concern. A better understanding of artemisinin-related drug activity and resistance mechanisms is urgently needed. A recent transcriptome study of parasites exposed to artesunate led us to identify a series of genes with modified levels of expression in the presence of the drug. The gene presenting the largest mRNA level increase, Pf10_0026 (PArt), encoding a hypothetical protein of unknown function, was chosen for further study. Immunodetection with PArt-specific sera showed that artesunate induced a dose-dependent increase of the protein level. Bioinformatic analysis showed that PArt belongs to a Plasmodium-specific gene family characterized by the presence of a tryptophan-rich domain with a novel hidden Markov model (HMM) profile. Gene disruption could not be achieved, suggesting an essential function. Transgenic parasites overexpressing PArt protein were generated and exhibited tolerance to a spike exposure to high doses of artesunate, with increased survival and reduced growth retardation compared to that of wild-type-treated controls. These data indicate the involvement of PArt in parasite defense mechanisms against artesunate. This is the first report of genetically manipulated parasites displaying a stable and reproducible decreased susceptibility to artesunate, providing new possibilities to investigate the parasite response to artemisinins.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/fisiología , Animales , Animales Modificados Genéticamente , Artesunato , Tolerancia a Medicamentos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
20.
Mol Biochem Parasitol ; 244: 111392, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34171456

RESUMEN

Plasmodium falciparum gametocytes modify the mechanical properties of their erythrocyte host to persist for several weeks in the blood circulation and to be available for mosquitoes. These changes are tightly regulated by the plasmodial phosphodiesterase delta that decreases both the stiffness and the permeability of the infected host cell. Here, we address the effect of the phosphodiesterase inhibitor tadalafil on deformability and permeability of gametocyte-infected erythrocytes. We show that this inhibitor drastically increases isosmotic lysis of gametocyte-infected erythrocytes and impairs their ability to circulate in an in vitro model for splenic retention. These findings indicate that tadalafil represents a novel drug lead potentially capable of blocking malaria parasite transmission by impacting gametocyte circulation.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/genética , Gametogénesis/efectos de los fármacos , Estadios del Ciclo de Vida/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Tadalafilo/farmacología , Fenómenos Biomecánicos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Deformación Eritrocítica/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Eritrocitos/ultraestructura , Femenino , Expresión Génica , Interacciones Huésped-Parásitos/efectos de los fármacos , Interacciones Huésped-Parásitos/genética , Humanos , Estadios del Ciclo de Vida/genética , Masculino , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Reproducción Asexuada/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA