Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 146(12): 4916-4934, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37849234

RESUMEN

Alzheimer's disease is a complex neurodegenerative disorder leading to a decline in cognitive function and mental health. Recent research has positioned the gut microbiota as an important susceptibility factor in Alzheimer's disease by showing specific alterations in the gut microbiome composition of Alzheimer's patients and in rodent models. However, it is unknown whether gut microbiota alterations are causal in the manifestation of Alzheimer's symptoms. To understand the involvement of Alzheimer's patient gut microbiota in host physiology and behaviour, we transplanted faecal microbiota from Alzheimer's patients and age-matched healthy controls into microbiota-depleted young adult rats. We found impairments in behaviours reliant on adult hippocampal neurogenesis, an essential process for certain memory functions and mood, resulting from Alzheimer's patient transplants. Notably, the severity of impairments correlated with clinical cognitive scores in donor patients. Discrete changes in the rat caecal and hippocampal metabolome were also evident. As hippocampal neurogenesis cannot be measured in living humans but is modulated by the circulatory systemic environment, we assessed the impact of the Alzheimer's systemic environment on proxy neurogenesis readouts. Serum from Alzheimer's patients decreased neurogenesis in human cells in vitro and were associated with cognitive scores and key microbial genera. Our findings reveal for the first time, that Alzheimer's symptoms can be transferred to a healthy young organism via the gut microbiota, confirming a causal role of gut microbiota in Alzheimer's disease, and highlight hippocampal neurogenesis as a converging central cellular process regulating systemic circulatory and gut-mediated factors in Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Humanos , Ratas , Animales , Hipocampo , Cognición , Microbioma Gastrointestinal/fisiología , Neurogénesis/fisiología
2.
Gut ; 72(7): 1296-1307, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36270778

RESUMEN

OBJECTIVE: The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. DESIGN: Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. RESULTS: In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. CONCLUSION: Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4+ T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Triptófano/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Intestinos , Inflamación
3.
Cancer Immunol Immunother ; 67(7): 1041-1052, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29572702

RESUMEN

BACKGROUND: Hepatic immunity, normally protective against neoplasia, is subverted in colorectal liver metastasis (CRLM). Here, we compare the inflammatory microenvironment of CRLM-bearing liver tissue to donor liver. METHODS: Twenty-five patients undergoing resection for CRLM were recruited, 13 of whom developed intrahepatic recurrence within 18 months. Biopsies were obtained from tumour and normal liver tissue adjacent to and distal from, the tumour. Donor liver biopsies were obtained during transplantation. Biopsies were cultured and conditioned media (CM) screened for 102 inflammatory mediators. Twelve of these were validated by Luminex assay. Transwell assays measured cancer cell chemotaxis. Polymorphonuclear leukocytes (PMN) and lymphocytes were quantified in H&E sections. RESULTS: Fewer periportal tissue-resident PMN were present in metastatic liver compared to donor liver. Patients with the fewest PMN in liver tissue distal to their tumour had a shorter time to intrahepatic recurrence (P < 0.001). IL-6, CXCL1, CXCL5, G-CSF, GM-CSF, VEGF, LIF, and CCL3 were higher in liver-bearing CRLM compared to donor tissue. Consequently, cancer cells migrated equally towards CM of all regions of metastatic liver but not towards donor liver CM. CONCLUSIONS: The local inflammatory environment may affect both immune cell infiltration and cancer cell migration contributing to recurrence following resection for CRLM.


Asunto(s)
Neoplasias Colorrectales/inmunología , Leucocitos/inmunología , Neoplasias Hepáticas/inmunología , Recurrencia Local de Neoplasia/inmunología , Neutrófilos/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/cirugía , Femenino , Estudios de Seguimiento , Humanos , Mediadores de Inflamación/metabolismo , Leucocitos/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/cirugía , Metástasis Linfática , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Neutrófilos/metabolismo , Pronóstico , Tasa de Supervivencia
4.
Trends Neurosci ; 47(4): 259-272, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508906

RESUMEN

Middle age has historically been an understudied period of life compared to older age, when cognitive and brain health decline are most pronounced, but the scope for intervention may be limited. However, recent research suggests that middle age could mark a shift in brain aging. We review emerging evidence on multiple levels of analysis indicating that midlife is a period defined by unique central and peripheral processes that shape future cognitive trajectories and brain health. Informed by recent developments in aging research and lifespan studies in humans and animal models, we highlight the utility of modeling non-linear changes in study samples with wide subject age ranges to distinguish life stage-specific processes from those acting linearly throughout the lifespan.


Asunto(s)
Encéfalo , Cognición , Persona de Mediana Edad , Animales , Humanos , Envejecimiento
5.
Nat Rev Microbiol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009882

RESUMEN

Diet has a pivotal role in shaping the composition, function and diversity of the gut microbiome, with various diets having a profound impact on the stability, functionality and diversity of the microbial community within our gut. Understanding the profound impact of varied diets on the microbiome is crucial, as it will enable us not only to make well-informed dietary decisions for better metabolic and intestinal health, but also to prevent and slow the onset of specific diet-related diseases that stem from suboptimal diets. In this Review, we explore how geographical location affects the gut microbiome and how different diets shape its composition and function. We examine the mechanisms by which whole dietary regimes, such as the Mediterranean diet, high-fibre diet, plant-based diet, high-protein diet, ketogenic diet and Western diet, influence the gut microbiome. Furthermore, we underscore the need for exhaustive studies to better understand the causal relationship between diet, host and microorganisms for the development of precision nutrition and microbiome-based therapies.

6.
Transl Psychiatry ; 14(1): 195, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658547

RESUMEN

Lifestyle factors, especially exercise, impact the manifestation and progression of psychiatric and neurodegenerative disorders such as depression and Alzheimer's disease, mediated by changes in hippocampal neuroplasticity. The beneficial effects of exercise may be due to its promotion of adult hippocampal neurogenesis (AHN). Gut microbiota has also been showed to be altered in a variety of brain disorders, and disturbances of the microbiota have resulted in alterations in brain and behaviour. However, whether exercise can counteract the negative effects of altered gut microbiota on brain function remains under explored. To this end, chronic disruption of the gut microbiota was achieved using an antibiotic cocktail in rats that were sedentary or allowed voluntary access to running wheels. Sedentary rats with disrupted microbiota displayed impaired performance in hippocampal neurogenesis-dependent tasks: the modified spontaneous location recognition task and the novelty suppressed feeding test. Performance in the elevated plus maze was also impaired due to antibiotics treatment. These behaviours, and an antibiotics-induced reduction in AHN were attenuated by voluntary exercise. The effects were independent of changes in the hippocampal metabolome but were paralleled by caecal metabolomic changes. Taken together these data highlight the importance of the gut microbiota in AHN-dependent behaviours and demonstrate the power of lifestyle factors such as voluntary exercise to attenuate these changes.


Asunto(s)
Conducta Animal , Microbioma Gastrointestinal , Hipocampo , Neurogénesis , Condicionamiento Físico Animal , Animales , Microbioma Gastrointestinal/fisiología , Neurogénesis/fisiología , Condicionamiento Físico Animal/fisiología , Ratas , Masculino , Conducta Animal/fisiología , Antibacterianos/farmacología , Ratas Sprague-Dawley , Conducta Sedentaria
7.
Biol Psychiatry ; 95(4): 348-360, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37918459

RESUMEN

Nutrition and diet quality play key roles in preventing and slowing cognitive decline and have been linked to multiple brain disorders. This review compiles available evidence from preclinical studies and clinical trials on the impact of nutrition and interventions regarding major psychiatric conditions and some neurological disorders. We emphasize the potential role of diet-related microbiome alterations in these effects and highlight commonalities between various brain disorders related to the microbiome. Despite numerous studies shedding light on these findings, there are still gaps in our understanding due to the limited availability of definitive human trial data firmly establishing a causal link between a specific diet and microbially mediated brain functions and symptoms. The positive impact of certain diets on the microbiome and cognitive function is frequently ascribed with the anti-inflammatory effects of certain microbial metabolites or a reduction of proinflammatory microbial products. We also critically review recent research on pro- and prebiotics and nondietary interventions, particularly fecal microbiota transplantation. The recent focus on diet in relation to brain disorders could lead to improved treatment outcomes with combined dietary, pharmacological, and behavioral interventions.


Asunto(s)
Encefalopatías , Microbioma Gastrointestinal , Trastornos Mentales , Humanos , Dieta , Encéfalo , Encefalopatías/metabolismo
8.
Microbiol Spectr ; : e0405123, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189754

RESUMEN

Subclinical mastitis is an asymptomatic inflammatory condition that can be difficult to define and diagnose. In the dairy industry, subclinical mastitis is diagnosed by milk somatic cell counts (SCCs) of ≥250,000 cells mL-1. In this pilot study, we assessed the efficacy of this index to identify human subclinical mastitis by comparing SCC levels with the inflammatory response [interleukin-8 (IL-8) levels] in 37 samples from asymptomatic and 10 clinical mastitis (CM) lactating women. The milk microbiota was determined by 16S rRNA gene sequencing. The SCC of CM samples ranged from 310,000 to 6,600,000 cells mL-1. However, 14 of 37 (37.8%) asymptomatic samples had high SCC (250,000-460,000 cells mL-1), indicating subclinical mastitis. SCC levels significantly (P < 0.001) and positively correlated with milk IL-8 levels reflecting the escalating inflammatory response across subclinical and clinical mastitis samples. Samples with an SCC of ≥250,000 cells mL-1 showed significant increases in IL-8 responses when compared with milk samples from healthy women. The milk microbiome of CM samples was dominated by streptococcal and staphylococcal species (89.9% combined median relative abundance). In contrast, the combined median streptococcal/staphylococcal relative levels were 75.4% and 66.3% in milks from asymptomatic (subclinical mastitis) and healthy groups, respectively. The Streptococcus genus was increased in samples with an SCC of ≥250,000, although this should be interpreted with caution. Thus, the index of ≥250,000 somatic cells mL-1 could be a reliable indicator of subclinical mastitis in humans and should aid future studies investigating the impact of subclinical mastitis on maternal health, breastfeeding behaviors, infant health, and development. IMPORTANCE: This pilot study suggests that SCC at a level of (greater than or equal to) 250,000 cells mL-1, as used in the dairy industry, is a suitable index to identify asymptomatic subclinical mastitis in lactating women since it reflects a significant increase in the inflammatory response compared to milk samples from healthy women. Using this index should aid studies into the short- and long-term consequences of subclinical mastitis for mother and infant.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37962812

RESUMEN

In the treatment of depressive disorders, conventional antidepressant therapy has been the mainstay of clinical management, along with well-established nonpharmacological interventions such as various kinds of psychotherapy. Over the last 2 decades, there has been considerable interest in the role of the gastrointestinal system and its microbiota on brain function, behavior, and mental health. Components of what is referred to as the microbiota-gut-brain axis have been uncovered, and further research has elicited functional capabilities such as "gut-brain modules." Some studies have found associations with compositional alterations of gut microbiota in patients with depressive disorders and individuals experiencing symptoms of depression. Regarding the pathogenesis and neurobiology of depression itself, there appears to be a multifactorial contribution, in addition to the theories involving deficits in catecholaminergic and monoamine neurotransmission. Interestingly, there is evidence to suggest that antidepressants may play a role in modulating the gut microbiota, thereby possibly having an impact on the microbiota-gut-brain axis in this manner. The development of prebiotics, probiotics, and synbiotics has led to studies investigating not only their impact on the microbiota but also their therapeutic value in mental health. These psychobiotics have the potential to be used as therapeutic adjuncts in the treatment of depression. Regarding future directions, and in an attempt to further understand the role of the microbiota-gut-brain axis in depression, more studies such as those involving fecal microbiota transplantation will be required. In addition to recent findings, it is also suggested that more research will have to be undertaken to elicit whether specific strains of gut organisms are linked to depression. In terms of further investigation of the therapeutic potential of prebiotics, probiotics, and synbiotics as adjuncts to antidepressant treatment, we also expect there to be more research targeting specific microorganisms, as well as a strong focus on the effects of specific prebiotic fibers from an individualized (personalized) point of view.

10.
HRB Open Res ; 6: 62, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38525261

RESUMEN

Background: The gut microbiota has been extensively implicated in health and disease. The functional outputs of the gut microbiota, such as microbial metabolites, are considered particularly important in this regard. Significant associations exist between alterations in the relative abundance of specific microbial taxa and mental health disorders. Dietary fiber has the potential to alter gut microbiota composition and function, modifying bacterial enzymatic function and the production of metabolites. As many taxa of microorganisms have enzymes capable of producing or degrading neurochemicals i.e. neuroactive gut brain modules, new predictive tools can be applied to existing datasets such as those harvested from dietary fiber interventions. We endeavor to perform a systematic review in order to identify studies reporting compositional gut microbiota alterations after interventions with dietary fiber in healthy individuals. We aim to also extract from the selected studies publicly available microbial genomic sequence datasets for reanalysis with a consistent bioinformatics pipeline, with the ultimate intention of identifying altered gut brain modules following dietary fiber interventions. Methods: Interventional trials and randomized controlled studies that are originally published, including cross-over and non-crossover design and involving healthy adult humans will be included. A systematic search of PubMed/MEDLINE and EMBASE, two electronic databases, will be completed. Discussion: Various types of dietary fiber have an impact on the gut microbiota composition, with some promoting the growth of particular taxa while others are reduced in relative abundance. Our search focuses on the impact of this food component on the microbiota of healthy individuals. Compositional gut microbial changes have been reported and our review will compile and update these observations after reanalysis of their datasets with a consistent bioinformatic pipeline. From this it may be possible to predict more detailed functional consequences in terms of neuroactive gut brain modules, of the compositional alterations in gut microbial taxa.

11.
Microbiome Res Rep ; 2: 35, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37849974

RESUMEN

Inflammatory bowel disease (IBD) is a complex heterogeneous disorder defined by recurring chronic inflammation of the gastrointestinal tract, attributed to a combination of factors including genetic susceptibility, altered immune response, a shift in microbial composition/microbial insults (infection/exposure), and environmental influences. Therapeutics generally used to treat IBD mainly focus on the immune response and include non-specific anti-inflammatory and immunosuppressive therapeutics and targeted therapeutics aimed at specific components of the immune system. Other therapies include exclusive enteral nutrition and emerging stem cell therapies. However, in recent years, scientists have begun to examine the interplay between these therapeutics and the gut microbiome, and we present this information here. Many of these therapeutics are associated with alterations to gut microbiome composition and functionality, often driving it toward a "healthier profile" and preclinical studies have revealed that such alterations can play an important role in therapeutic efficacy. The gut microbiome can also improve or hinder IBD therapeutic efficacy or generate undesirable metabolites. For certain IBD therapeutics, the microbiome composition, particularly before treatment, may serve as a biomarker of therapeutic efficacy. Utilising this information and manipulating the interactions between the gut microbiome and IBD therapeutics may enhance treatment outcomes in the future and bring about new opportunities for personalised, precision medicine.

12.
Commun Biol ; 6(1): 221, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841913

RESUMEN

Viruses are increasingly recognised as important components of the human microbiome, fulfilling numerous ecological roles including bacterial predation, immune stimulation, genetic diversification, horizontal gene transfer, microbial interactions, and augmentation of metabolic functions. However, our current view of the human gut virome is tainted by previous sequencing requirements that necessitated the amplification of starting nucleic acids. In this study, we performed an original longitudinal analysis of 40 healthy control, 19 Crohn's disease, and 20 ulcerative colitis viromes over three time points without an amplification bias, which revealed and highlighted the interpersonal individuality of the human gut virome. In contrast to a 16 S rRNA gene analysis of matched samples, we show that α- and ß-diversity metrics of unamplified viromes are not as efficient at discerning controls from patients with inflammatory bowel disease. Additionally, we explored the intrinsic properties of unamplified gut viromes and show there is considerable interpersonal variability in viral taxa, infrequent longitudinal persistence of intrapersonal viruses, and vast fluctuations in the abundance of temporal viruses. Together, these properties of unamplified faecal viromes confound the ability to discern disease associations but significantly advance toward an unbiased and accurate representation of the human gut virome.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Virus , Humanos , Viroma/genética , Microbioma Gastrointestinal/genética , Virus/genética , Colitis Ulcerosa/genética , Colitis Ulcerosa/microbiología , Enfermedades Inflamatorias del Intestino/genética
13.
Cell Rep ; 42(11): 113350, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37897726

RESUMEN

Although high-fat diet (HFD)-induced gut microbiota dysbiosis is known to affect atherosclerosis, the underlying mechanisms remain to be fully explored. Here, we show that the progression of atherosclerosis depends on a gut microbiota shaped by an HFD but not a high-cholesterol (HC) diet and, more particularly, on low fiber (LF) intake. Mechanistically, gut lymphoid cells impacted by HFD- or LF-induced microbiota dysbiosis highly proliferate in mesenteric lymph nodes (MLNs) and migrate from MLNs to the periphery, which fuels T cell accumulation within atherosclerotic plaques. This is associated with the induction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) within plaques and the presence of enterotropic lymphocytes expressing ß7 integrin. MLN resection or lymphocyte deficiency abrogates the pro-atherogenic effects of a microbiota shaped by LF. Our study shows a pathological link between a diet-shaped microbiota, gut immune cells, and atherosclerosis, suggesting that a diet-modulated microbiome might be a suitable therapeutic target to prevent atherosclerosis.


Asunto(s)
Aterosclerosis , Microbiota , Placa Aterosclerótica , Humanos , Animales , Ratones , Disbiosis/inducido químicamente , Linfocitos , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
14.
Nat Commun ; 14(1): 4622, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528097

RESUMEN

Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe-/- mice as well as hematopoietic deletion in Ldlr-/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe-/-Rag2-/-Card9-/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1ß production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.


Asunto(s)
Aterosclerosis , Humanos , Animales , Ratones , Aterosclerosis/metabolismo , Autofagia/genética , Apolipoproteínas E/genética , Lípidos , Proteínas Adaptadoras de Señalización CARD/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
15.
Mol Metab ; 57: 101427, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34973469

RESUMEN

BACKGROUND: Despite several decades of research, managing body weight remains an unsolved clinical problem. Health problems associated with dysregulated body weight, such as obesity and cachexia, exhibit several gut microbiota alterations. There is an increased interest in utilising the gut microbiota for body weight control, as it responds to intervention and plays an important role in energy extraction from food, as well as biotransformation of nutrients. SCOPE OF THE REVIEW: This review provides an overview of the role of the gut microbiota in the physiological and metabolic alterations observed in two body weight dysregulation-related disorders, namely obesity and cachexia. Second, we assess the available evidence for different strategies, including caloric restriction, intermittent fasting, ketogenic diet, bariatric surgery, probiotics, prebiotics, synbiotics, high-fibre diet, and fermented foods - effects on body weight and gut microbiota composition. This approach was used to give insights into the possible link between body weight control and gut microbiota configuration. MAJOR CONCLUSIONS: Despite extensive associations between body weight and gut microbiota composition, limited success could be achieved in the translation of microbiota-related interventions for body weight control in humans. Manipulation of the gut microbiota alone is insufficient to alter body weight and future research is needed with a combination of strategies to enhance the effects of lifestyle interventions.


Asunto(s)
Microbiota , Probióticos , Simbióticos , Humanos , Obesidad/metabolismo , Prebióticos
16.
Nat Microbiol ; 7(8): 1301-1311, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35918425

RESUMEN

The mammalian virome has been linked to health and disease but our understanding of how it is structured along the longitudinal axis of the mammalian gastrointestinal tract (GIT) and other organs is limited. Here, we report a metagenomic analysis of the prokaryotic and eukaryotic virome occupying luminal and mucosa-associated habitats along the GIT, as well as parenchymal organs (liver, lung and spleen), in two representative mammalian species, the domestic pig and rhesus macaque (six animals per species). Luminal samples from the large intestine of both mammals harboured the highest loads and diversity of bacteriophages (class Caudoviricetes, family Microviridae and others). Mucosal samples contained much lower viral loads but a higher proportion of eukaryotic viruses (families Astroviridae, Caliciviridae, Parvoviridae). Parenchymal organs contained bacteriophages of gut origin, in addition to some eukaryotic viruses. Overall, GIT virome composition was specific to anatomical region and host species. Upper GIT and mucosa-specific viruses were greatly under-represented in distal colon samples (a proxy for faeces). Nonetheless, certain viral and phage species were ubiquitous in all samples from the oral cavity to the distal colon. The dataset and its accompanying methodology may provide an important resource for future work investigating the biogeography of the mammalian gut virome.


Asunto(s)
Bacteriófagos , Virus , Animales , Bacteriófagos/genética , Heces , Macaca mulatta , Mamíferos , Metagenoma , Metagenómica , Virus/genética
17.
Gut Microbes ; 14(1): 2078620, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35638103

RESUMEN

Due to the potential role of the gut microbiota and bile acids in the pathogenesis of both inflammatory bowel disease (IBD) and sporadic colorectal cancer, we aimed to determine whether these factors were associated with colorectal cancer in IBD patients. 215 IBD patients and 51 non-IBD control subjects were enrolled from 10 French IBD centers between September 2011 and July 2018. Fecal samples were processed for bacterial 16S rRNA gene sequencing and bile acid profiling. Demographic, clinical, endoscopic, and histological outcomes were recorded. Characteristics of IBD patients included: median age: 41.6 (IQR 22); disease duration 13.2 (13.1); 47% female; 21.9% primary sclerosing cholangitis; 109 patients with Crohn's disease (CD); 106 patients with ulcerative colitis (UC). The prevalence of cancer was 2.8% (6/215: 1 CD; 5 UC), high-grade dysplasia 3.7% (8/215) and low-grade dysplasia 7.9% (17/215). Lachnospira was decreased in IBD patients with cancer, while Agathobacter was decreased and Escherichia-Shigella increased in UC patients with any neoplasia. Bile acids were not associated with cancer or neoplasia. Unsupervised clustering identified three gut microbiota clusters in IBD patients associated with bile acid composition and clinical features, including a higher risk of neoplasia in UC in two clusters when compared to the third (relative risk (RR) 4.07 (95% CI 1.6-10.3, P < .01) and 3.56 (95% CI 1.4-9.2, P < .01)). In this multicentre observational study, a limited number of taxa were associated with neoplasia and exploratory microbiota clusters co-associated with clinical features, including neoplasia risk in UC. Given the very small number of cancers, the robustness of these findings will require assessment and validation in future studies.


Asunto(s)
Colitis Ulcerosa , Neoplasias Colorrectales , Enfermedad de Crohn , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Adulto , Ácidos y Sales Biliares , Colitis Ulcerosa/microbiología , Neoplasias Colorrectales/etiología , Enfermedad de Crohn/microbiología , Detección Precoz del Cáncer/efectos adversos , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Masculino , ARN Ribosómico 16S/genética
18.
Mucosal Immunol ; 14(5): 1127-1132, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34282272

RESUMEN

Patients receiving allogeneic hematopoietic cell transplantation (alloHCT) were previously shown to display a bacterial gut dysbiosis; however, limited data are available regarding the role of fungal microbiota in these patients. We evaluated the bacterial and fungal composition of the fecal microbiota at day 0 of alloHCT. Higher bacterial diversity was associated with an improved overall survival (OS) and disease-free survival (DFS). While fungal diversity had no impact on patient outcomes, we observed that high versus low relative abundance of Candida albicans in alloHCT patients at day 0 was associated with a significantly lower OS, DFS and graft-versus-host-free, relapse-free survival (GRFS) (p = 0.0008, p = 0.0064 and p = 0.026, respectively). While these results are limited by low patient numbers and low fungal read counts in some samples, they suggest a potentially important role for C albicans in alloHCT.


Asunto(s)
Microbioma Gastrointestinal , Evaluación del Impacto en la Salud , Trasplante de Células Madre Hematopoyéticas , Consorcios Microbianos , Micobioma , Adulto , Anciano , Femenino , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Histocompatibilidad , Humanos , Masculino , Metagenoma , Metagenómica , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Acondicionamiento Pretrasplante , Trasplante Homólogo , Resultado del Tratamiento , Adulto Joven
19.
Nat Rev Gastroenterol Hepatol ; 17(4): 223-237, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32076145

RESUMEN

A key role of the gut microbiota in the establishment and maintenance of health, as well as in the pathogenesis of disease, has been identified over the past two decades. One of the primary modes by which the gut microbiota interacts with the host is by means of metabolites, which are small molecules that are produced as intermediate or end products of microbial metabolism. These metabolites can derive from bacterial metabolism of dietary substrates, modification of host molecules, such as bile acids, or directly from bacteria. Signals from microbial metabolites influence immune maturation, immune homeostasis, host energy metabolism and maintenance of mucosal integrity. Alterations in the composition and function of the microbiota have been described in many studies on IBD. Alterations have also been described in the metabolite profiles of patients with IBD. Furthermore, specific classes of metabolites, notably bile acids, short-chain fatty acids and tryptophan metabolites, have been implicated in the pathogenesis of IBD. This Review aims to define the key classes of microbial-derived metabolites that are altered in IBD, describe the pathophysiological basis of these associations and identify future targets for precision therapeutic modulation.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Enfermedades Inflamatorias del Intestino/microbiología , Animales , Ácidos y Sales Biliares/metabolismo , Ácidos Grasos Volátiles/fisiología , Trasplante de Microbiota Fecal/métodos , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/terapia , Metabolómica/métodos , Probióticos/uso terapéutico , Triptófano/metabolismo
20.
Cancer Immunol Res ; 8(11): 1407-1425, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32933968

RESUMEN

Tumor growth is accompanied with dramatic changes in the cellular glycome, such as the aberrant expression of complex branched N-glycans. However, the role of this protumoral N-glycan in immune evasion and whether its removal contributes to enhancement of immune recognition and to unleashing an antitumor immune response remain elusive. We demonstrated that branched N-glycans are used by colorectal cancer cells to escape immune recognition, instructing the creation of immunosuppressive networks through inhibition of IFNγ. The removal of this "glycan-mask" exposed immunogenic mannose glycans that potentiated immune recognition by DC-SIGN-expressing immune cells, resulting in an effective antitumor immune response. We revealed a glycoimmune checkpoint in colorectal cancer, highlighting the therapeutic efficacy of its deglycosylation to potentiate immune recognition and, thus, improving cancer immunotherapy.


Asunto(s)
Neoplasias Colorrectales/inmunología , Inmunoterapia/métodos , Polisacáridos/metabolismo , Progresión de la Enfermedad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA