RESUMEN
Hereditary spastic paraplegia, SPG31, is a rare neurological disorder caused by mutations in REEP1 gene encoding the microtubule-interacting protein, REEP1. The mechanism by which REEP1-dependent processes are linked with the disease is unclear. REEP1 regulates the morphology and trafficking of various organelles via interaction with the microtubules. In this study, we collected primary fibroblasts from SPG31 patients to investigate their mitochondrial morphology. We observed that the mitochondrial morphology in patient cells was highly tubular compared with control cells. We provide evidence that these morphological alterations are caused by the inhibition of mitochondrial fission protein, DRP1, due to the hyperphosphorylation of its serine 637 residue. This hyperphosphorylation is caused by impaired interactions between REEP1 and mitochondrial phosphatase PGAM5. Genetically or pharmacologically induced decrease of DRP1-S637 phosphorylation restores mitochondrial morphology in patient cells. Furthermore, ectopic expression of REEP1 carrying pathological mutations in primary neuronal culture targets REEP1 to the mitochondria. Mutated REEP1 proteins sequester mitochondria to the perinuclear region of the neurons and therefore, hamper mitochondrial transport along the axon. Considering the established role of mitochondrial distribution and morphology in neuronal health, our results support the involvement of a mitochondrial dysfunction in SPG31 pathology.
Asunto(s)
Núcleo Celular , GTP Fosfohidrolasas , Proteínas Asociadas a Microtúbulos , Mitocondrias , Proteínas Mitocondriales , Neuronas/metabolismo , Paraplejía Espástica Hereditaria , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Células Cultivadas , Dinaminas , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuronas/patología , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación/genética , Paraplejía Espástica Hereditaria/metabolismo , Paraplejía Espástica Hereditaria/patologíaRESUMEN
The hereditary spastic paraplegias are an expanding and heterogeneous group of disorders characterized by spasticity in the lower limbs. Plasma biomarkers are needed to guide the genetic testing of spastic paraplegia. Spastic paraplegia type 5 (SPG5) is an autosomal recessive spastic paraplegia due to mutations in CYP7B1, which encodes a cytochrome P450 7α-hydroxylase implicated in cholesterol and bile acids metabolism. We developed a method based on ultra-performance liquid chromatography electrospray tandem mass spectrometry to validate two plasma 25-hydroxycholesterol (25-OHC) and 27-hydroxycholesterol (27-OHC) as diagnostic biomarkers in a cohort of 21 patients with SPG5. For 14 patients, SPG5 was initially suspected on the basis of genetic analysis, and then confirmed by increased plasma 25-OHC, 27-OHC and their ratio to total cholesterol. For seven patients, the diagnosis was initially based on elevated plasma oxysterol levels and confirmed by the identification of two causal CYP7B1 mutations. The receiver operating characteristic curves analysis showed that 25-OHC, 27-OHC and their ratio to total cholesterol discriminated between SPG5 patients and healthy controls with 100% sensitivity and specificity. Taking advantage of the robustness of these plasma oxysterols, we then conducted a phase II therapeutic trial in 12 patients and tested whether candidate molecules (atorvastatin, chenodeoxycholic acid and resveratrol) can lower plasma oxysterols and improve bile acids profile. The trial consisted of a three-period, three-treatment crossover study and the six different sequences of three treatments were randomized. Using a linear mixed effect regression model with a random intercept, we observed that atorvastatin decreased moderately plasma 27-OHC (â¼30%, P < 0.001) but did not change 27-OHC to total cholesterol ratio or 25-OHC levels. We also found an abnormal bile acids profile in SPG5 patients, with significantly decreased total serum bile acids associated with a relative decrease of ursodeoxycholic and lithocholic acids compared to deoxycholic acid. Treatment with chenodeoxycholic acid restored bile acids profile in SPG5 patients. Therefore, the combination of atorvastatin and chenodeoxycholic acid may be worth considering for the treatment of SPG5 patients but the neurological benefit of these metabolic interventions remains to be evaluated in phase III therapeutic trials using clinical, imaging and/or electrophysiological outcome measures with sufficient effect sizes. Overall, our study indicates that plasma 25-OHC and 27-OHC are robust diagnostic biomarkers of SPG5 and shall be used as first-line investigations in any patient with unexplained spastic paraplegia.
Asunto(s)
Anticolesterolemiantes/uso terapéutico , Mutación/genética , Oxiesteroles/sangre , Paraplejía Espástica Hereditaria/sangre , Paraplejía Espástica Hereditaria/tratamiento farmacológico , Paraplejía Espástica Hereditaria/genética , Adolescente , Adulto , Atorvastatina/uso terapéutico , Ácidos y Sales Biliares/sangre , Niño , Colesterol/sangre , Estudios de Cohortes , Familia 7 del Citocromo P450/genética , Ácido Desoxicólico/uso terapéutico , Femenino , Humanos , Hidroxicolesteroles/sangre , Lactante , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Examen Neurológico , Curva ROC , Resveratrol/uso terapéutico , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Esteroide Hidroxilasas/genética , Adulto JovenRESUMEN
Podocytes play a key role in diabetic nephropathy pathogenesis, but alteration of their metabolism remains unknown in human kidney. By using a conditionally differentiating human podocyte cell line, we addressed the functional and molecular changes in podocyte energetics during in vitro development or under high glucose conditions. In 5 mM glucose medium, we observed a stepwise activation of oxidative metabolism during cell differentiation that was characterized by peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)-dependent stimulation of mitochondrial biogenesis and function, with concomitant reduction of the glycolytic enzyme content. Conversely, when podocytes were cultured in high glucose (20 mM), stepwise oxidative phosphorylation biogenesis was aborted, and a glycolytic switch occurred, with consecutive lactic acidosis. Expression of the master regulators of oxidative metabolism transcription factor A mitochondrial, PGC-1α, AMPK, and serine-threonine liver kinase B1 was altered by high glucose, as well as their downstream signaling networks. Focused transcriptomics revealed that myocyte-specific enhancer factor 2C (MEF2C) and myogenic factor 5 (MYF5) expression was inhibited by high glucose levels, and endoribonuclease-prepared small interfering RNA-mediated combined inhibition of those transcription factors phenocopied the glycolytic shift that was observed in high glucose conditions. Accordingly, a reduced expression of MEF2C, MYF5, and PGC-1α was found in kidney tissue sections that were obtained from patients with diabetic nephropathy. These findings obtained in human samples demonstrate that MEF2C-MYF5-dependent bioenergetic dedifferentiation occurs in podocytes that are confronted with a high-glucose milieu.-Imasawa, T., Obre, E., Bellance, N., Lavie, J., Imasawa, T., Rigothier, C., Delmas, Y., Combe, C., Lacombe, D., Benard, G., Claverol, S., Bonneu, M., Rossignol, R. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Nefropatías Diabéticas/patología , Metabolismo Energético/efectos de los fármacos , Glucosa/farmacología , Podocitos/efectos de los fármacos , Cápsula Glomerular/metabolismo , Células Cultivadas , Metabolismo Energético/fisiología , Regulación de la Expresión Génica , Glucosa/administración & dosificación , Humanos , Oxidación-Reducción , Podocitos/fisiologíaRESUMEN
ABHD12 mutations have been linked to neurodegenerative PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract), a rare, progressive, autosomal, recessive disease. Although ABHD12 is suspected to play a role in the lysophosphatidylserine and/or endocannabinoid pathways, its precise functional role(s) leading to PHARC disease had not previously been characterized. Cell and zebrafish models were designed to demonstrate the causal link between an identified new missense mutation p.T253R, characterized in ABHD12 from a young patient, the previously characterized p.T202I and p.R352* mutations, and the associated PHARC. Measuring ABHD12 monoacylglycerol lipase activity in transfected HEK293 cells demonstrated inhibition with mutated isoforms. Both the expression pattern of zebrafish abhd12 and the phenotype of specific antisense morpholino oligonucleotide gene knockdown morphants were consistent with human PHARC hallmarks. High abhd12 transcript levels were found in the optic tectum and tract, colocalized with myelin basic protein, and in the spinal cord. Morphants have myelination defects and concomitant functional deficits, characterized by progressive ataxia and motor skill impairment. A disruption of retina architecture and retinotectal projections was observed, together with an inhibition of lens clarification and a low number of mechanosensory hair cells in the inner ear and lateral line system. The severe phenotypes in abhd12 knockdown morphants were rescued by introducing wild-type human ABHD12 mRNA, but not by mutation-harboring mRNAs. Zebrafish may provide a suitable vertebrate model for ABHD12 insufficiency and the study of functional impairment and potential therapeutic rescue of this rare, neurodegenerative disease.
Asunto(s)
Ataxia/genética , Catarata/genética , Monoacilglicerol Lipasas/genética , Mutación Missense , Polineuropatías/genética , Retinitis Pigmentosa/genética , Adulto , Animales , Animales Modificados Genéticamente , Ataxia/patología , Ataxia/fisiopatología , Catarata/patología , Catarata/fisiopatología , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Modelos Animales , Monoacilglicerol Lipasas/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Fenotipo , Polineuropatías/patología , Polineuropatías/fisiopatología , ARN Mensajero/metabolismo , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/fisiopatología , Sensación/fisiología , Natación/fisiología , Pez CebraRESUMEN
Objectives: Mitochondrial DNA (mtDNA) contains sequestered damage-associated molecular patterns that might be involved in osteoimmunological pathogenesis of RA. Here, we aimed to investigate the cellular source of mtDNA and its role in RANK ligand (RANKL) expression by RA SF neutrophils. Methods: The gene expression signature of SF neutrophils was examined by proteomic quantitative analysis. Levels of mtDNA in circulating and SF neutrophils from RA patients and OA control subjects were assessed by real-time PCR. Purified neutrophils were challenged in vitro with Toll-like receptor agonists as well as mtDNA. RANKL expression by neutrophils was studied by flow cytometry. Results: SF neutrophils from RA patients displayed a gene expression signature of oxidative stress. This stress signature was associated with the release of mtDNA in SF as observed by a significant increase of mtDNA in the SF of RA patients compared with OA patients. mtDNA in RA SF was correlated with systemic inflammation as assessed by CRP concentrations. We also showed that mtDNA drives neutrophil RANKL expression to the same extent as Toll-like receptor agonists. Conclusion: Our data identify SF neutrophils as a cellular source of mtDNA that leads to a subsequent expression of RANKL. This highlights the important role of neutrophils in RA osteoimmunology.
Asunto(s)
Artritis Reumatoide/genética , ADN Mitocondrial/metabolismo , Regulación de la Expresión Génica , Ligando RANK/genética , Receptor Activador del Factor Nuclear kappa-B/genética , Adulto , Anciano , Artritis Reumatoide/inmunología , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Estrés Oxidativo/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Valores de Referencia , Estudios Retrospectivos , Transducción de Señal/genéticaRESUMEN
Mitochondria are intracellular power plants that feed most eukaryotic cells with the ATP produced by the oxidative phosphorylation (OXPHOS). Mitochondrial energy production is controlled by many regulatory mechanisms. The control of mitochondrial mass through both mitochondrial biogenesis and degradation has been proposed to be one of the most important regulatory mechanisms. Recently, autophagic degradation of mitochondria has emerged as an important mechanism involved in the regulation of mitochondrial quantity and quality. In this review, we highlight the intricate connections between mitochondrial energy metabolism and mitochondrial autophagic degradation by showing the importance of mitochondrial bioenergetics in this process and illustrating the role of mitophagy in mitochondrial patho-physiology. Furthermore, we discuss how energy metabolism could coordinate the biogenesis and degradation of this organelle.
Asunto(s)
Metabolismo Energético/fisiología , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Animales , HumanosRESUMEN
OBJECTIVE: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in the SACS gene. SACS encodes sacsin, a protein whose function remains unknown, despite the description of numerous protein domains and the recent focus on its potential role in the regulation of mitochondrial physiology. This study aimed to identify new mutations in a large population of ataxic patients and to functionally analyze their cellular effects in the mitochondrial compartment. METHODS: A total of 321 index patients with spastic ataxia selected from the SPATAX network were analyzed by direct sequencing of the SACS gene, and 156 patients from the ATAXIC project presenting with congenital ataxia were investigated either by targeted or whole exome sequencing. For functional analyses, primary cultures of fibroblasts were obtained from 11 patients carrying either mono- or biallelic variants, including 1 case harboring a large deletion encompassing the entire SACS gene. RESULTS: We identified biallelic SACS variants in 33 patients from SPATAX, and in 5 nonprogressive ataxia patients from ATAXIC. Moreover, a drastic and recurrent alteration of the mitochondrial network was observed in 10 of the 11 patients tested. INTERPRETATION: Our results permit extension of the clinical and mutational spectrum of ARSACS patients. Moreover, we suggest that the observed mitochondrial network anomalies could be used as a trait biomarker for the diagnosis of ARSACS when SACS molecular results are difficult to interpret (ie, missense variants and heterozygous truncating variant). Based on our findings, we propose new diagnostic definitions for ARSACS using clinical, genetic, and cellular criteria.
Asunto(s)
Biomarcadores , Proteínas de Choque Térmico/fisiología , Mitocondrias , Espasticidad Muscular/diagnóstico , Ataxias Espinocerebelosas/congénito , Adolescente , Adulto , Técnicas de Cultivo de Célula , Niño , Estudios de Cohortes , Femenino , Fibroblastos , Proteínas de Choque Térmico/genética , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/fisiología , Espasticidad Muscular/genética , Espasticidad Muscular/patología , Espasticidad Muscular/fisiopatología , Mutación , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/fisiopatología , Adulto JovenRESUMEN
Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function.
Asunto(s)
Ácidos Grasos/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Paraplejía Espástica Hereditaria/enzimología , Paraplejía Espástica Hereditaria/genética , Adolescente , Adulto , Niño , Preescolar , Mapeo Cromosómico , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 2 del Citocromo P450 , Femenino , Perfilación de la Expresión Génica , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Fenotipo , Fosfolipasas/genética , Fosfolipasas/metabolismo , Transporte de Proteínas , Adulto JovenRESUMEN
A child of consanguineous parents of Pakistani origin developed jaundice at 5 weeks and then, at 3 months, irritability, a prolonged prothrombin time, a low albumin, and episodes of hypoglycaemia. Investigation showed an elevated alanine aminotransferase with a normal γ-glutamyl-transpeptidase. Analysis of urine by electrospray ionisation tandem mass spectrometry (ESI-MS/MS) showed that the major peaks were m/z 480 (taurine-conjugated 3ß-hydroxy-5-cholenoic acid) and m/z 453 (sulphated 3ß-hydroxy-5-cholenoic acid). Analysis of plasma by gas chromatography-mass spectrometry (GC-MS) showed increased concentrations of 3ß-hydroxy-5-cholenoic acid, 3ß-hydroxy-5-cholestenoic acid and 27-hydroxycholesterol, indicating oxysterol 7 α-hydroxylase deficiency. The patient was homozygous for a mutation (c.1249C>T) in CYP7B1 that alters a highly conserved residue in oxysterol 7 α-hydroxylase (p.R417C) - previously reported in a family with hereditary spastic paraplegia type 5. On treatment with ursodeoxycholic acid (UDCA), his condition was worsening, but on chenodeoxycholic acid (CDCA), 15 mg/kg/d, he improved rapidly. A biopsy (after 2 weeks on CDCA), showed a giant cell hepatitis, an evolving micronodular cirrhosis, and steatosis. The improvement in liver function on CDCA was associated with a drop in the plasma concentrations and urinary excretions of the 3ß-hydroxy-Δ5 bile acids which are considered hepatotoxic. At age 5 years (on CDCA, 6 mg/kg/d), he was thriving with normal liver function. Neurological development was normal apart from a tendency to trip. Examination revealed pes cavus but no upper motor neuron signs. The findings in this case suggest that CDCA can reduce the activity of cholesterol 27-hydroxylase - the first step in the acidic pathway for bile acid synthesis.
Asunto(s)
Ácido Quenodesoxicólico/uso terapéutico , Hepatopatías/tratamiento farmacológico , Hepatopatías/genética , Esteroide Hidroxilasas/deficiencia , Esteroide Hidroxilasas/genética , Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/orina , Consanguinidad , Familia 7 del Citocromo P450 , Humanos , Lactante , Hígado/patología , Hepatopatías/enzimología , Masculino , Errores Innatos del Metabolismo/tratamiento farmacológico , Errores Innatos del Metabolismo/genéticaRESUMEN
In mammals, about 99% of mitochondrial proteins are synthesized in the cytosol as precursors that are subsequently imported into the organelle. The mitochondrial health and functions rely on an accurate quality control of these imported proteins. Here, we show that the E3 ubiquitin ligase F box/leucine-rich-repeat protein 6 (FBXL6) regulates the quality of cytosolically translated mitochondrial proteins. Indeed, we found that FBXL6 substrates are newly synthesized mitochondrial ribosomal proteins. This E3 binds to chaperones involved in the folding and trafficking of newly synthesized peptide and to ribosomal-associated quality control proteins. Deletion of these interacting partners is sufficient to hamper interactions between FBXL6 and its substrate. Furthermore, we show that cells lacking FBXL6 fail to degrade specifically mistranslated mitochondrial ribosomal proteins. Finally, showing the role of FBXL6-dependent mechanism, FBXL6-knockout (KO) cells display mitochondrial ribosomal protein aggregations, altered mitochondrial metabolism, and inhibited cell cycle in oxidative conditions.
Asunto(s)
Proteínas Ribosómicas , Ubiquitina-Proteína Ligasas , Mamíferos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Dominios Proteicos , Proteínas Ribosómicas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , HumanosRESUMEN
The ubiquitin proteasome system (UPS) regulates many cellular functions by degrading key proteins. Notably, the role of UPS in regulating mitochondrial metabolic functions is unclear. Here, we show that ubiquitination occurs in different mitochondrial compartments, including the inner mitochondrial membrane, and that turnover of several metabolic proteins is UPS dependent. We specifically detailed mitochondrial ubiquitination and subsequent UPS-dependent degradation of succinate dehydrogenase subunit A (SDHA), which occurred when SDHA was minimally involved in mitochondrial energy metabolism. We demonstrate that SDHA ubiquitination occurs inside the organelle. In addition, we show that the specific inhibition of SDHA degradation by UPS promotes SDHA-dependent oxygen consumption and increases ATP, malate, and citrate levels. These findings suggest that the mitochondrial metabolic machinery is also regulated by the UPS.
Asunto(s)
Metabolismo Energético , Proteínas Mitocondriales/metabolismo , Proteolisis , Ubiquitina/metabolismo , Células HeLa , Humanos , Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Subunidades de Proteína/metabolismo , Succinato Deshidrogenasa/metabolismo , UbiquitinaciónRESUMEN
RATIONALE: Hereditary spastic paraplegia (HSP) is a heterogeneous group of diseases little known in clinical practice due to its low prevalence, slow progression, and difficult diagnosis. This results in an underestimation of HSP leading to belated diagnosis and management. In depth diagnosis is based on clinical presentation and identification of genomic mutations. We describe the clinical presentation and pathogeny of HSP through a report of a case due to a novel mutation of the REEP1 gene (SPG31). PATIENT CONCERNS: A 64-year-old woman presented gait disturbances due to spasticity of the lower limbs progressing since her third decade. Previous investigations failed to find any cause. INTERVENTIONS: DNA analysis was performed to search for HSP causing mutations. DIAGNOSES: A novel heterozygote mutation (c.595â+â1G>A) of the REEP1 gene, within the splice site of intron 6, was discovered. This nucleotide change causes exon 6 skipping leading to frame shift and a truncated transcript identified by complementary DNA sequencing of reverse transcription polymerase chain reaction products. OUTCOMES: REEP1 is a known protein predominantly located in the upper motor neurons. Mutation of REEP1 primary affects the longest axons explaining predominance of pyramidal syndrome on lower limbs. LESSONS: Slow progressive pyramidal syndrome of the lower limbs should elicit a diagnosis of HSP. We describe a novel mutation of the REEP1 gene causing HSP. Pathogeny is based on resulting abnormal REEP1 protein which is involved in the development of longest axons constituting the corticospinal tracts.
Asunto(s)
Proteínas de Transporte de Membrana/genética , Paraplejía Espástica Hereditaria/genética , Femenino , Mutación del Sistema de Lectura , Humanos , Persona de Mediana EdadRESUMEN
Parathyroid hormone-like hormone (PTHLH, MIM 168470) plays an important role in endochondral bone development and prevents chondrocytes from differentiating. Disease-causing variants and haploinsufficiency of PTHLH are known to cause brachydactyly type E and short stature. So far, three large duplications encompassing several genes including PTHLH associating with enchondromatas and acro-osteolysis have been described in the literature. Here, we report on a three-generation pedigree with short humerus, curved radius, and a specific type of severe brachydactyly with features of types E and A1 but without the enchondromatas and the acro-osteolysis. Microarray-based comparative genomic hybridization (array-CGH) revealed a 70-kb duplication on chromosome 12p11.22 encompassing only PTHLH. Our data extend the phenotypic spectrum associated with copy number variations of PTHLH, and this family is to our knowledge the first description harboring a microduplication encompassing only PTHLH.
Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Braquidactilia/genética , Fémur/anomalías , Duplicación de Gen , Húmero/anomalías , Proteína Relacionada con la Hormona Paratiroidea/genética , Adulto , Enfermedades del Desarrollo Óseo/diagnóstico , Braquidactilia/diagnóstico , Preescolar , Cromosomas Humanos Par 12/genética , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Masculino , Linaje , FenotipoRESUMEN
The emerging evidences suggest that posttranslational modification of target protein by ubiquitin (Ub) not only regulate its turnover through ubiquitin proteasome system (UPS) but is a critical regulator of various signaling pathways. During ubiquitination, E3 ligase recognizes the target protein and determines the topology of ubiquitin chains. In current study, we studied the role of TRIM4, a member of the TRIM/RBCC protein family of RING E3 ligase, in regulation of hydrogen peroxide (H2O2) induced cell death. TRIM4 is expressed differentially in human tissues and expressed in most of the analyzed human cancer cell lines. The subcellular localization studies showed that TRIM4 forms distinct cytoplasmic speckle like structures which transiently interacts with mitochondria. The expression of TRIM4 induces mitochondrial aggregation and increased level of mitochondrial ROS in the presence of H2O2. It sensitizes the cells to H2O2 induced death whereas knockdown reversed the effect. TRIM4 potentiates the loss of mitochondrial transmembrane potential and cytochrome c release in the presence of H2O2. The analysis of TRIM4 interacting proteins showed its interaction with peroxiredoxin 1 (PRX1), including other proteins involved in regulation of mitochondrial and redox homeostasis. TRIM4 interaction with PRX1 is critical for the regulation of H2O2 induced cell death. Collectively, the evidences in the current study suggest the role of TRIM4 in regulation of oxidative stress induced cell death.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Western Blotting , Proliferación Celular/efectos de los fármacos , Citocromos c/metabolismo , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Inmunoprecipitación , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de la Membrana/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Proteómica , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Ubiquitina/metabolismo , Ubiquitinación/efectos de los fármacosRESUMEN
AIMS: Cellular energy homeostasy relies on mitochondrial plasticity, the molecular determinants of which are multiple. Yet, the relative contribution of and possible cooperation between mitochondrial biogenesis and morphogenesis to cellular energy homeostasy remains elusive. Here we analyzed the adaptative capacity of mitochondrial content and dynamics in muscle biopsies of patients with a complex IV defect, and in skin fibroblasts challenged with complex IV inhibition. RESULTS: We observed a biphasic variation of the mitochondrial content upon complex IV inhibition in muscle biopsies and in skin fibroblasts. Adjustment of mitochondrial content for respiratory maintenance was blocked by using a dominant negative form of CREB (CREB-M1) and by L-NAME, a blocker of NO production. Accordingly, cells treated with KCN 6 µM showed higher levels of phospho-CREB, PGC1α mRNA, eNOS mRNA, and mtTFA mRNA. We also observed the increased expression of the fission protein DRP1 during fibroblasts adaptation, as well as mitochondrial ultrastructural defects indicative of increased fission in patients muscle micrographs. Accordingly, the expression of a dominant negative form of DRP1 (K38A mutant) reduced the biogenic response in fibroblasts challenged with 6 µM KCN. INNOVATION: Our findings indicate that mitochondrial biogenesis and mitochondrial fission cooperate to promote cellular adaptation to respiratory chain inhibition. CONCLUSIONS: Our data show for the first time that DRP1 intervenes during the initiation of the mitochondrial adaptative response to respiratory chain defects. The evidenced pathway of mitochondrial adaptation to respiratory chain deficiency provides a safety mechanism against mitochondrial dysfunction.
Asunto(s)
Transporte de Electrón/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Western Blotting , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Microscopía Electrónica , Mitocondrias/ultraestructura , Óxido Nítrico/metabolismo , Cianuro de Potasio/farmacología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Mitophagy has been recently described as a mechanism of elimination of damaged organelles. Although the regulation of the amount of mitochondria is a core issue concerning cellular energy homeostasis, the relationship between mitochondrial degradation and energetic activity has not yet been considered. Here, we report that the stimulation of mitochondrial oxidative phosphorylation enhances mitochondrial renewal by increasing its degradation rate. Upon high oxidative phosphorylation activity, we found that the small GTPase Rheb is recruited to the mitochondrial outer membrane. This mitochondrial localization of Rheb promotes mitophagy through a physical interaction with the mitochondrial autophagic receptor Nix and the autophagosomal protein LC3-II. Thus, Rheb-dependent mitophagy contributes to the maintenance of optimal mitochondrial energy production. Our data suggest that mitochondrial degradation contributes to a bulk renewal of the organelle in order to prevent mitochondrial aging and to maintain the efficiency of oxidative phosphorylation.