Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 222(Pt 10)2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30975742

RESUMEN

The interaction between the gut microbiota (GM) and the brain has led to the concept of the microbiota-gut-brain axis but data for birds remain scarce. We tested the hypothesis that colonization of germ-free chicks from a quail line selected for a high emotional reactivity (E+) with GM from a line with low emotional reactivity (E-) would reduce their emotional behaviour in comparison with germ-free chicks from an E+ line colonized with GM from the same E+ line. The GM composition analysis of both groups revealed a shift in terms of microbial diversity and richness between day 21 and day 35 and the GM of the two groups of quails were closer to each other at day 35 than at day 21 at a phylum level. Quails that received GM from the E- line expressed a lower emotional reactivity than quails colonized by GM from the E+ line in tonic immobility and novel environment tests carried out during the second week of age. This result was reversed in a second tonic immobility test and an open-field run 2 weeks later. These behavioural and GM modifications over time could be the consequence of the resilience of the GM to recover the equilibrium present in the E+ host, which is in part driven by the host genotype. This study shows for the first time that a GM transfer can influence emotional reactivity in Japanese quails, supporting the existence of a microbiota-gut-brain axis in this species of bird.


Asunto(s)
Coturnix/fisiología , Emociones , Microbioma Gastrointestinal/fisiología , Animales , Conducta Animal , Coturnix/microbiología , Femenino
2.
Poult Sci ; 102(11): 102967, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37639754

RESUMEN

Avian pathogenic Escherichia coli (APEC) causes colibacillosis, the main bacterial disease in poultry leading to significant economic losses worldwide. Antibiotic treatments favor the emergence of multidrug-resistant bacteria, and preventive measures are insufficient to control the disease. There is increasing interest in using the potential of bacteriophages, not only for phage therapy but also for prevention and biocontrol. This study aimed to evaluate the efficacy of a phage cocktail administered in ovo to prevent avian colibacillosis in chicks. When 4 different phages (REC, ESCO3, ESCO47, and ESCO58), stable under avian physiological conditions, were combined and inoculated at 17 embryogenic days (ED), they were transmitted to the newly hatched chicks. In a second trial, the 4-phage cocktail was inoculated into the allantoic fluid at ED16 and after hatch 1-day-old chicks were challenged with the O2 APEC strain BEN4358 inoculated subcutaneously. Two phages (REC and ESCO3) were still detected in the ceca of surviving chicks at the end of the experiment (7-days postinfection). Chicks that received the phages in ovo did not develop colibacillosis lesions and showed a significant decrease in intestinal BEN4358 load (8.00 × 107 CFU/g) compared to the challenged chicks (4.52 × 108 CFU/g). The majority of the reisolated bacteria from the ceca of surviving chicks had developed full resistance to ESCO3 phage, and only 3 were resistant to REC phage. The partially or complete resistance of REC phage induced a considerable cost to bacterial virulence. Here, we showed that phages inoculated in ovo can partially prevent colibacillosis in 1-wk-old chicks. The reduction in the APEC load in the gut and the decreased virulence of some resistant isolates could also contribute to control the disease.

3.
J Vis Exp ; (160)2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32628163

RESUMEN

Studies of the gut microbiota contribution to the host physiology and immunocompetence are facilitated by the availability of germ-free animal models, which are considered the gold standard. Nesting birds are ideal models for the production of germ-free animals since there is no need to raise their relatives under sterile conditions. Germ-free chickens are mainly generated from specific-pathogen-free (SPF) experimental lines, which are poorly representative of commercial chicken lines. The method proposed here allowed the production of germ-free chickens from the fast growing broiler line Ross PM3, commonly used by the poultry industry. Eggs were quickly collected after laying at a broiler breeder farm. They underwent a strict decontamination process from the collection to the introduction in a sterile egg hatching isolator. The chicks have been hatched and kept in these sterile isolators during the period necessary to control their sterility. Originally developed for an experimental SPF white leghorn line, the present protocol has been adapted not only to the Ross PM3 broiler line but also to quails. It therefore represents a robust and readily adaptable procedure to other poultry species and nesting birds of economic, biological or ecological relevance.


Asunto(s)
Pollos/crecimiento & desarrollo , Pollos/microbiología , Microbiota , Organismos Libres de Patógenos Específicos , Animales , Óvulo/fisiología
4.
Sci Rep ; 10(1): 4992, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32193429

RESUMEN

Breast Cancer Anti-estrogen Resistance 4 (BCAR4) was previously characterised in bovine species as a gene preferentially expressed in oocytes, whose inhibition is detrimental to in vitro embryo development. But its role in oogenesis, folliculogenesis and globally fertility in vivo remains unknown. Because the gene is not conserved in mice, rabbits were chosen for investigation of BCAR4 expression and function in vivo. BCAR4 displayed preferential expression in the ovary compared to somatic organs, and within the ovarian follicle in the oocyte compared to somatic cells. The transcript was detected in follicles as early as the preantral stage. Abundance decreased throughout embryo development until the blastocyst stage. A lineage of genome-edited rabbits was produced; BCAR4 expression was abolished in follicles from homozygous animals. Females of wild-type, heterozygous and homozygous genotypes were examined for ovarian physiology and reproductive parameters. Follicle growth and the number of ovulations in response to hormonal stimulation were not significantly different between genotypes. Following insemination, homozygous females displayed a significantly lower delivery rate than their heterozygous counterparts (22 ± 7% vs 71 ± 11% (mean ± SEM)), while prolificacy was 1.8 ± 0.7 vs 6.0 ± 1.4 kittens per insemination. In conclusion, BCAR4 is not essential for follicular growth and ovulation but it contributes to optimal fertility in rabbits.


Asunto(s)
Desarrollo Embrionario/genética , Fertilidad/genética , Edición Génica , Folículo Ovárico/fisiología , ARN Largo no Codificante/fisiología , Animales , Femenino , Expresión Génica , Folículo Ovárico/metabolismo , Ovulación/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA