Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell ; 184(19): 4969-4980.e15, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34332650

RESUMEN

Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found seven major antibody competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of antibody-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. Although emerging SARS-CoV-2 variants of concern escaped binding by many members of the groups associated with the most potent neutralizing activity, some antibodies in each of those groups retained affinity-suggesting that otherwise redundant components of a primary immune response are important for durable protection from evolving pathogens. Our results furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants.

2.
Cell ; 183(6): 1496-1507.e16, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33171099

RESUMEN

Antibodies are key immune effectors that confer protection against pathogenic threats. The nature and longevity of the antibody response to SARS-CoV-2 infection are not well defined. We charted longitudinal antibody responses to SARS-CoV-2 in 92 subjects after symptomatic COVID-19. Antibody responses to SARS-CoV-2 are unimodally distributed over a broad range, with symptom severity correlating directly with virus-specific antibody magnitude. Seventy-six subjects followed longitudinally to ∼100 days demonstrated marked heterogeneity in antibody duration dynamics. Virus-specific IgG decayed substantially in most individuals, whereas a distinct subset had stable or increasing antibody levels in the same time frame despite similar initial antibody magnitudes. These individuals with increasing responses recovered rapidly from symptomatic COVID-19 disease, harbored increased somatic mutations in virus-specific memory B cell antibody genes, and had persistent higher frequencies of previously activated CD4+ T cells. These findings illuminate an efficient immune phenotype that connects symptom clearance speed to differential antibody durability dynamics.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , Linfocitos T CD4-Positivos/inmunología , COVID-19 , Inmunoglobulina G/inmunología , Activación de Linfocitos , Mutación , COVID-19/genética , COVID-19/inmunología , Humanos , SARS-CoV-2/genética , SARS-CoV-2/inmunología
3.
EMBO Rep ; 24(12): e57724, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38277394

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells by first engaging its cellular receptor angiotensin converting enzyme 2 (ACE2) to induce conformational changes in the virus-encoded spike protein and fusion between the viral and target cell membranes. Here, we report that certain monoclonal neutralizing antibodies against distinct epitopic regions of the receptor-binding domain of the spike can replace ACE2 to serve as a receptor and efficiently support membrane fusion and viral infectivity in vitro. These receptor-like antibodies can function in the form of a complex of their soluble immunoglobulin G with Fc-gamma receptor I, a chimera of their antigen-binding fragment with the transmembrane domain of ACE2 or a membrane-bound B cell receptor, indicating that ACE2 and its specific interaction with the spike protein are dispensable for SARS-CoV-2 entry. These results suggest that antibody responses against SARS-CoV-2 may help expand the viral tropism to otherwise nonpermissive cell types with potential implications for viral transmission and pathogenesis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Unión Proteica
4.
J Virol ; 96(24): e0127022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36453881

RESUMEN

Broadly neutralizing antibodies (bNAbs) for HIV-1 prevention or cure strategies must inhibit transmitted/founder and reservoir viruses. Establishing sensitivity of circulating viruses to bNAbs and genetic patterns affecting neutralization variability may guide rational bNAbs selection for clinical development. We analyzed 326 single env genomes from nine individuals followed longitudinally following acute HIV-1 infection, with samples collected at ~1 week after the first detection of plasma viremia; 300 to 1,709 days postinfection but prior to initiating antiretroviral therapy (ART) (median = 724 days); and ~1 year post ART initiation. Sequences were assessed for phylogenetic relatedness, potential N- and O-linked glycosylation, and variable loop lengths (V1 to V5). A total of 43 env amplicons (median = 3 per patient per time point) were cloned into an expression vector and the TZM-bl assay was used to assess the neutralization profiles of 15 bNAbs targeting the CD4 binding site, V1/V2 region, V3 supersite, MPER, gp120/gp41 interface, and fusion peptide. At 1 µg/mL, the neutralization breadths were as follows: VRC07-LS and N6.LS (100%), VRC01 (86%), PGT151 (81%), 10-1074 and PGT121 (80%), and less than 70% for 10E8, 3BNC117, CAP256.VRC26, 4E10, PGDM1400, and N123-VRC34.01. Features associated with low sensitivity to V1/V2 and V3 bNAbs were higher potential glycosylation sites and/or relatively longer V1 and V4 domains, including known "signature" mutations. The study shows significant variability in the breadth and potency of bNAbs against circulating HIV-1 subtype C envelopes. VRC07-LS, N6.LS, VRC01, PGT151, 10-1074, and PGT121 display broad activity against subtype C variants, and major determinants of sensitivity to most bNAbs were within the V1/V4 domains. IMPORTANCE Broadly neutralizing antibodies (bNAbs) have potential clinical utility in HIV-1 prevention and cure strategies. However, bNAbs target diverse epitopes on the HIV-1 envelope and the virus may evolve to evade immune responses. It is therefore important to identify antibodies with broad activity in high prevalence settings, as well as the genetic patterns that may lead to neutralization escape. We investigated 15 bNAbs with diverse biophysical properties that target six epitopes of the HIV-1 Env glycoprotein for their ability to inhibit viruses that initiated infection, viruses circulating in plasma at chronic infection before antiretroviral treatment (ART), or viruses that were archived in the reservoir during ART in subtype C infected individuals in South Africa, a high burden country. We identify the antibodies most likely to be effective for clinical use in this setting and describe mutational patterns associated with neutralization escape from these antibodies.


Asunto(s)
Infecciones por VIH , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Humanos , Anticuerpos ampliamente neutralizantes/metabolismo , Epítopos/genética , Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/genética , Filogenia , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(18): 9981-9990, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32300019

RESUMEN

HIV-1 persists in cellular reservoirs that can reignite viremia if antiretroviral therapy (ART) is interrupted. Therefore, insight into the nature of those reservoirs may be revealed from the composition of recrudescing viremia following treatment cessation. A minor population of macrophage-tropic (M-tropic) viruses was identified in a library of recombinant viruses constructed with individual envelope genes that were obtained from plasma of six individuals undergoing analytic treatment interruption (ATI). M-tropic viruses could also be enriched from post-ATI plasma using macrophage-specific (CD14) but not CD4+ T cell-specific (CD3) antibodies, suggesting that M-tropic viruses had a macrophage origin. Molecular clock analysis indicated that the establishment of M-tropic HIV-1 variants predated ATI. Collectively, these data suggest that macrophages are a viral reservoir in HIV-1-infected individuals on effective ART and that M-tropic variants can appear in rebounding viremia when treatment is interrupted. These findings have implications for the design of curative strategies for HIV-1.


Asunto(s)
Relojes Biológicos/genética , Infecciones por VIH/genética , VIH-1/genética , Viremia/genética , Antirretrovirales/farmacología , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/patología , Infecciones por VIH/patología , Infecciones por VIH/virología , Seropositividad para VIH , VIH-1/patogenicidad , Humanos , Macrófagos/inmunología , Macrófagos/patología , Provirus/genética , Carga Viral/genética , Viremia/patología , Viremia/virología
6.
Nat Chem Biol ; 16(5): 529-537, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32152540

RESUMEN

Combination antiretroviral therapy has transformed HIV-1 infection, once a fatal illness, into a manageable chronic condition. Drug resistance, severe side effects and treatment noncompliance bring challenges to combination antiretroviral therapy implementation in clinical settings and indicate the need for additional molecular targets. Here, we have identified several small-molecule fusion inhibitors, guided by a neutralizing antibody, against an extensively studied vaccine target-the membrane proximal external region (MPER) of the HIV-1 envelope spike. These compounds specifically inhibit the HIV-1 envelope-mediated membrane fusion by blocking CD4-induced conformational changes. An NMR structure of one compound complexed with a trimeric MPER construct reveals that the compound partially inserts into a hydrophobic pocket formed exclusively by the MPER residues, thereby stabilizing its prefusion conformation. These results suggest that the MPER is a potential therapeutic target for developing fusion inhibitors and that strategies employing an antibody-guided search for novel therapeutics may be applied to other human diseases.


Asunto(s)
Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/metabolismo , Internalización del Virus/efectos de los fármacos , Sitios de Unión , Antígenos CD4/metabolismo , Membrana Celular/metabolismo , Decualinio/química , Decualinio/farmacología , Evaluación Preclínica de Medicamentos/métodos , Polarización de Fluorescencia , Células HEK293 , Proteína gp41 de Envoltorio del VIH/genética , VIH-1/patogenicidad , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Estructura Molecular , Mutación , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
7.
J Virol ; 94(10)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132241

RESUMEN

Simian-human immunodeficiency virus (SHIV) infection of rhesus monkeys is an important preclinical model for human immunodeficiency virus type 1 (HIV-1) vaccines, therapeutics, and cure strategies. SHIVs have been optimized by incorporating HIV-1 Env residue 375 mutations that mimic the bulky or hydrophobic residues typically found in simian immunodeficiency virus (SIV) Env to improve rhesus CD4 binding. We applied this strategy to three SHIV challenge stocks (SHIV-SF162p3, SHIV-AE16, and SHIV-325c) and observed three distinct outcomes. We constructed six Env375 variants (M, H, W, Y, F, and S) for each SHIV, and we performed a pool competition study in rhesus monkeys to define the optimal variant for each SHIV prior to generating large-scale challenge stocks. We identified SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH as the optimal variants. SHIV-SF162p3S could not be improved, as it already contained the optimal Env375 residue. SHIV-AE16W exhibited a similar replicative capacity to the parental SHIV-AE16 stock. In contrast, SHIV-325cH demonstrated a 2.6-log higher peak and 1.6-log higher setpoint viral loads than the parental SHIV-325c stock. These data demonstrate the diversity of potential outcomes following Env375 modification in SHIVs. Moreover, the clade C SHIV-325cH challenge stock may prove useful for evaluating prophylactic or therapeutic interventions against clade C HIV-1.IMPORTANCE We sought to enhance the infectivity of three SHIV stocks by optimization of a key residue in human immunodeficiency virus type 1 (HIV-1) Env (Env375). We developed the following three new simian-human immunodeficiency virus (SHIV) stocks: SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH. SHIV-SF162p3S could not be optimized, SHIV-AE16W proved comparable to the parental virus, and SHIV-325cH demonstrated markedly enhanced replicative capacity compared with the parental virus.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Anticuerpos Neutralizantes , Linfocitos T CD4-Positivos , Femenino , Productos del Gen env/genética , Infecciones por VIH/virología , VIH-1/genética , VIH-1/inmunología , Humanos , Macaca mulatta , Masculino , Mutación , Análisis de Secuencia , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral , Replicación Viral
8.
Proc Natl Acad Sci U S A ; 113(49): E7908-E7916, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872306

RESUMEN

HIV-1-infected individuals harbor a latent reservoir of infected CD4+ T cells that is not eradicated by antiretroviral therapy (ART). This reservoir presents the greatest barrier to an HIV-1 cure and has remained difficult to characterize, in part, because the vast majority of integrated sequences are defective and incapable of reactivation. To characterize the replication-competent reservoir, we have combined two techniques, quantitative viral outgrowth and qualitative sequence analysis of clonal outgrowth viruses. Leukapheresis samples from four fully ART-suppressed, chronically infected individuals were assayed at two time points separated by a 4- to 6-mo interval. Overall, 54% of the viruses emerging from the latent reservoir showed gp160 env sequences that were identical to at least one other virus. Moreover, 43% of the env sequences from viruses emerging from the reservoir were part of identical groups at the two time points. Groups of identical expanded sequences made up 54% of proviral DNA, and, as might be expected, the sequences of replication-competent viruses in the active reservoir showed limited overlap with integrated proviral DNA, most of which is known to represent defective viruses. Finally, there was an inverse correlation between proviral DNA clone size and the probability of reactivation, suggesting that replication-competent viruses are less likely to be found among highly expanded provirus-containing cell clones.

9.
PLoS Pathog ; 12(2): e1005431, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26849216

RESUMEN

Simian-human immunodeficiency virus (SHIV) challenge stocks are critical for preclinical testing of vaccines, antibodies, and other interventions aimed to prevent HIV-1. A major unmet need for the field has been the lack of a SHIV challenge stock expressing circulating recombinant form 01_AE (CRF01_AE) env sequences. We therefore sought to develop mucosally transmissible SHIV challenge stocks containing HIV-1 CRF01_AE env derived from acutely HIV-1 infected individuals from Thailand. SHIV-AE6, SHIV-AE6RM, and SHIV-AE16 contained env sequences that were >99% identical to the original HIV-1 isolate and did not require in vivo passaging. These viruses exhibited CCR5 tropism and displayed a tier 2 neutralization phenotype. These challenge stocks efficiently infected rhesus monkeys by the intrarectal route, replicated to high levels during acute infection, and established chronic viremia in a subset of animals. SHIV-AE16 was titrated for use in single, high dose as well as repetitive, low dose intrarectal challenge studies. These SHIV challenge stocks should facilitate the preclinical evaluation of vaccines, monoclonal antibodies, and other interventions targeted at preventing HIV-1 CRF01_AE infection.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/genética , Animales , Anticuerpos Neutralizantes/inmunología , Células Cultivadas , Femenino , Humanos , Macaca mulatta , Masculino , Viremia/inmunología
10.
J Virol ; 89(4): 1965-74, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25473043

RESUMEN

UNLABELLED: The development of a panel of mucosally transmissible simian-human immunodeficiency virus (SHIV) challenge stocks from multiple virus clades would facilitate preclinical evaluation of candidate HIV-1 vaccines and therapeutics. The majority of SHIV stocks that have been generated to date have been derived from clade B HIV-1 env sequences from viruses isolated during chronic infection and typically required serial animal-to-animal adaptation for establishing mucosal transmissibility and pathogenicity. To capture essential features of mucosal transmission of clade C viruses, we produced a series of SHIVs with early clade C HIV-1 env sequences from acutely HIV-1-infected individuals from South Africa. SHIV-327c and SHIV-327cRM expressed env sequences that were 99.7 to 100% identical to the original HIV-1 isolate and did not require in vivo passaging for mucosal infectivity. These challenge stocks infected rhesus monkeys efficiently by both intrarectal and intravaginal routes, replicated to high levels during acute infection, and established chronic setpoint viremia in 13 of 17 (76%) infected animals. The SHIV-327cRM challenge stock was also titrated for both single, high-dose intrarectal challenges and repetitive, low-dose intrarectal challenges in rhesus monkeys. These SHIV challenge stocks should facilitate the preclinical evaluation of vaccines and other interventions aimed at preventing clade C HIV-1 infection. IMPORTANCE: We describe the development of two related clade C SHIV challenge stocks. These challenge stocks should prove useful for preclinical testing of vaccines and other interventions aimed at preventing clade C HIV-1 infection.


Asunto(s)
VIH-1/crecimiento & desarrollo , VIH-1/aislamiento & purificación , Membrana Mucosa/virología , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Virus de la Inmunodeficiencia de los Simios/aislamiento & purificación , Animales , Modelos Animales de Enfermedad , Femenino , VIH-1/genética , VIH-1/patogenicidad , Humanos , Macaca mulatta , Masculino , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Virulencia
11.
J Virol ; 89(5): 2507-19, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25540368

RESUMEN

UNLABELLED: The sequence diversity of human immunodeficiency virus type 1 (HIV-1) presents a formidable challenge to the generation of an HIV-1 vaccine. One strategy to address such sequence diversity and to improve the magnitude of neutralizing antibodies (NAbs) is to utilize multivalent mixtures of HIV-1 envelope (Env) immunogens. Here we report the generation and characterization of three novel, acute clade C HIV-1 Env gp140 trimers (459C, 405C, and 939C), each with unique antigenic properties. Among the single trimers tested, 459C elicited the most potent NAb responses in vaccinated guinea pigs. We evaluated the immunogenicity of various mixtures of clade C Env trimers and found that a quadrivalent cocktail of clade C trimers elicited a greater magnitude of NAbs against a panel of tier 1A and 1B viruses than any single clade C trimer alone, demonstrating that the mixture had an advantage over all individual components of the cocktail. These data suggest that vaccination with a mixture of clade C Env trimers represents a promising strategy to augment vaccine-elicited NAb responses. IMPORTANCE: It is currently not known how to generate potent NAbs to the diverse circulating HIV-1 Envs by vaccination. One strategy to address this diversity is to utilize mixtures of different soluble HIV-1 envelope proteins. In this study, we generated and characterized three distinct, novel, acute clade C soluble trimers. We vaccinated guinea pigs with single trimers as well as mixtures of trimers, and we found that a mixture of four trimers elicited a greater magnitude of NAbs than any single trimer within the mixture. The results of this study suggest that further development of Env trimer cocktails is warranted.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Anti-VIH/sangre , VIH-1/inmunología , Vacunación/métodos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/administración & dosificación , Animales , Femenino , Cobayas , Resultado del Tratamiento
12.
J Virol ; 88(22): 13510-5, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25210178

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) vaccines that elicit protective antibody responses at mucosal sites would be highly desirable. Here, we report that intramuscular immunization of candidate HIV-1 vaccine vectors and purified Env proteins elicited potent and durable humoral immune responses in colorectal mucosa in rhesus monkeys. The kinetics, isotypes, functionality, and epitope specificity of these mucosal antibody responses were similar to those of peripheral responses in serum. These data suggest a close immunological relationship between mucosal and systemic antibody responses following vaccination in primates.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/análisis , VIH-1/inmunología , Mucosa Intestinal/inmunología , Suero/inmunología , Vacunas contra el SIDA/administración & dosificación , Animales , Inyecciones Intramusculares , Macaca mulatta , Recto/inmunología
13.
J Virol ; 86(4): 2153-64, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22156525

RESUMEN

Broad and potent neutralizing antibody (BNAb) responses are rare in people infected by human immunodeficiency virus type 1 (HIV-1). Clearly defining the nature of BNAb epitopes on HIV-1 envelope glycoproteins (Envs) targeted in vivo is critical for future directions of anti-HIV-1 vaccine development. Conventional techniques are successful in defining neutralizing epitopes in a small number of individual subjects but fail in studying large groups of subjects. Two independent methods were employed to investigate the nature of NAb epitopes targeted in 9 subjects, identified by the NIAID Center for HIV/AIDS Vaccine Immunology (CHAVI) 001 and 008 clinical teams, known to make a strong BNAb response. Neutralizing activity from 8/9 subjects was enhanced by enriching high-mannose N-linked glycan (HM-glycan) of HIV-1 glycoproteins on neutralization target viruses and was sensitive to specific glycan deletion mutations of HIV-1 glycoproteins, indicating that HM-glycan-dependent epitopes are targeted by BNAb responses in these subjects. This discovery adds to accumulating evidence supporting the hypothesis that glycans are important targets on HIV-1 glycoproteins for BNAb responses in vivo, providing an important lead for future directions in developing NAb-based anti-HIV-1 vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Manosa/inmunología , Polisacáridos/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Mapeo Epitopo , Epítopos/genética , Epítopos/inmunología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/fisiología , Humanos , Pruebas de Neutralización , Polisacáridos/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
14.
Sci Transl Med ; 15(695): eabq4490, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37163616

RESUMEN

Early initiation of antiretroviral therapy (ART) alters viral rebound kinetics after analytic treatment interruption (ATI) and may play a role in promoting HIV-1 remission. Autologous neutralizing antibodies (aNAbs) represent a key adaptive immune response in people living with HIV-1. We aimed to investigate the role of aNAbs in shaping post-ATI HIV-1 rebound variants. We performed single-genome amplification of HIV-1 env from pre-ART and post-ATI plasma samples of 12 individuals who initiated ART early after infection. aNAb activity was quantified using pseudoviruses derived from the most common plasma variant, and the serum dilution that inhibited 50% of viral infections was determined. aNAb responses matured while participants were on suppressive ART, because on-ART plasma and purified immunoglobulin G (IgG) demonstrated improved neutralizing activity against pre-ART HIV-1 strains when compared with pre-ART plasma or purified IgG. Post-ATI aNAb responses exerted selective pressure on the rebounding viruses, because the post-ATI HIV-1 strains were more resistant to post-ATI plasma neutralization compared with the pre-ART virus. Several pre-ATI features distinguished post-treatment controllers from noncontrollers, including an infecting HIV-1 sequence that was more similar to consensus HIV-1 subtype B, more restricted proviral diversity, and a stronger aNAb response. Post-treatment control was also associated with the evolution of distinct N-glycosylation profiles in the HIV-1 envelope. In summary, aNAb responses appeared to mature after early initiation of ART and applied selective pressure on rebounding viruses. The combination of aNAb activity with select HIV-1 sequence and reservoir features identified individuals with a greater chance of post-treatment control.


Asunto(s)
Anticuerpos Neutralizantes , Infecciones por VIH , Humanos , Anticuerpos Neutralizantes/uso terapéutico , Antirretrovirales/uso terapéutico , Provirus , Inmunoglobulina G , Anticuerpos Anti-VIH , Carga Viral
15.
Nat Struct Mol Biol ; 30(7): 980-990, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37430064

RESUMEN

The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. Here, we have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and an animal model with previously prevalent variants. BA.2 S can fuse membranes slightly more efficiently than Omicron BA.1, but still less efficiently than other previous variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces, leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility of the Omicron subvariants.


Asunto(s)
COVID-19 , Animales , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
16.
Cell Rep ; 39(4): 110729, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35452593

RESUMEN

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), bearing an unusually high number of mutations, has become a dominant strain in many countries within several weeks. We report here structural, functional, and antigenic properties of its full-length spike (S) protein with a native sequence in comparison with those of previously prevalent variants. Omicron S requires a substantially higher level of host receptor ACE2 for efficient membrane fusion than other variants, possibly explaining its unexpected cellular tropism. Mutations not only remodel the antigenic structure of the N-terminal domain of the S protein but also alter the surface of the receptor-binding domain in a way not seen in other variants, consistent with its remarkable resistance to neutralizing antibodies. These results suggest that Omicron S has acquired an extraordinary ability to evade host immunity by excessive mutations, which also compromise its fusogenic capability.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Mutación/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
17.
bioRxiv ; 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35547850

RESUMEN

The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. We have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and animal model with previously prevalent variants. BA.2 S can fuse membranes more efficiently than Omicron BA.1, mainly due to lack of a BA.1-specific mutation that may retard the receptor engagement, but still less efficiently than other variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility for the Omicron subvariants.

18.
medRxiv ; 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35262094

RESUMEN

There is increasing evidence that the risk of SARS-CoV-2 infection among vaccinated individuals is variant-specific, suggesting that protective immunity against SARS-CoV-2 may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. For individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.

19.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214224

RESUMEN

Protective immunity against SARS-CoV-2 infection after COVID-19 vaccination may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. For example, among individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.


Asunto(s)
Vacunas contra el SIDA , COVID-19 , Vacunas contra la Influenza , Vacunas contra Papillomavirus , Vacunas contra Virus Sincitial Respiratorio , Vacunas contra el SIDAS , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BCG , COVID-19/prevención & control , Vacunas contra la COVID-19 , Convalecencia , Vacuna contra Difteria, Tétanos y Tos Ferina , Humanos , Vacuna contra el Sarampión-Parotiditis-Rubéola , Pruebas de Neutralización , SARS-CoV-2
20.
Nat Struct Mol Biol ; 28(2): 202-209, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432247

RESUMEN

Effective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a membrane-bound carboxypeptidase that forms a dimer and serves as the cellular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2 is also a key negative regulator of the renin-angiotensin system that modulates vascular functions. We report here the properties of a trimeric ACE2 ectodomain variant, engineered using a structure-based approach. The trimeric ACE2 variant has a binding affinity of ~60 pM for the spike protein of SARS­CoV­2 (compared with 77 nM for monomeric ACE2 and 12-22 nM for dimeric ACE2 constructs), and its peptidase activity and the ability to block activation of angiotensin II receptor type 1 in the renin-angiotensin system are preserved. Moreover, the engineered ACE2 potently inhibits SARS­CoV­2 infection in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Antivirales/química , Tratamiento Farmacológico de COVID-19 , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/uso terapéutico , Antivirales/uso terapéutico , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Ingeniería de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapéutico , SARS-CoV-2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA