Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Cell Sci ; 135(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35892282

RESUMEN

Many animal cell shape changes are driven by gradients in the contractile tension of the actomyosin cortex, a thin cytoskeletal network supporting the plasma membrane. Elucidating cortical tension control is thus essential for understanding cell morphogenesis. Increasing evidence shows that alongside myosin activity, actin network organisation and composition are key to cortex tension regulation. However, owing to a poor understanding of how cortex composition changes when tension changes, which cortical components are important remains unclear. In this article, we compared cortices from cells with low and high cortex tensions. We purified cortex-enriched fractions from cells in interphase and mitosis, as mitosis is characterised by high cortical tension. Mass spectrometry analysis identified 922 proteins consistently represented in both interphase and mitotic cortices. Focusing on actin-related proteins narrowed down the list to 238 candidate regulators of the mitotic cortical tension increase. Among these candidates, we found that there is a role for septins in mitotic cell rounding control. Overall, our study provides a comprehensive dataset of candidate cortex regulators, paving the way for systematic investigations of the regulation of cell surface mechanics. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Actinas , Proteómica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Humanos , Interfase , Mitosis
2.
PLoS Genet ; 17(6): e1009583, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34125833

RESUMEN

Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células HEK293 , Humanos , Mutación , Fosforilación , Transporte de Proteínas , Subunidades Ribosómicas Pequeñas/metabolismo , Transducción de Señal , Especificidad por Sustrato , Transcripción Genética
3.
Mol Cell Proteomics ; 19(1): 50-64, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678930

RESUMEN

The RAS/mitogen-activated protein kinase (MAPK) signaling pathway regulates various biological functions, including cell survival, proliferation and migration. This pathway is frequently deregulated in cancer, including melanoma, which is the most aggressive form of skin cancer. RSK (p90 ribosomal S6 kinase) is a MAPK-activated protein kinase required for melanoma growth and proliferation, but relatively little is known about its function and the nature of its cellular partners. In this study, we used a proximity-based labeling approach to identify RSK proximity partners in cells. We identified many potential RSK-interacting proteins, including p120ctn (p120-catenin), which is an essential component of adherens junction (AJ). We found that RSK phosphorylates p120ctn on Ser320, which appears to be constitutively phosphorylated in melanoma cells. We also found that RSK inhibition increases melanoma cell-cell adhesion, suggesting that constitutive RAS/MAPK signaling negatively regulates AJ integrity. Together, our results indicate that RSK plays an important role in the regulation of melanoma cell-cell adhesion.


Asunto(s)
Cateninas/metabolismo , Adhesión Celular/genética , Melanoma/metabolismo , Proteómica/métodos , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Cateninas/genética , Línea Celular Tumoral , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Interferencia de ARN , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal/genética , Catenina delta
4.
Genes Dev ; 28(4): 357-71, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24532714

RESUMEN

The mammalian target of rapamycin (mTOR) promotes cell growth and proliferation by promoting mRNA translation and increasing the protein synthetic capacity of the cell. Although mTOR globally promotes translation by regulating the mRNA 5' cap-binding protein eIF4E (eukaryotic initiation factor 4E), it also preferentially regulates the translation of certain classes of mRNA via unclear mechanisms. To help fill this gap in knowledge, we performed a quantitative proteomic screen to identify proteins that associate with the mRNA 5' cap in an mTOR-dependent manner. Using this approach, we identified many potential regulatory factors, including the putative RNA-binding protein LARP1 (La-related protein 1). Our results indicate that LARP1 associates with actively translating ribosomes via PABP and that LARP1 stimulates the translation of mRNAs containing a 5' terminal oligopyrimidine (TOP) motif, encoding for components of the translational machinery. We found that LARP1 associates with the mTOR complex 1 (mTORC1) and is required for global protein synthesis as well as cell growth and proliferation. Together, these data reveal important molecular mechanisms involved in TOP mRNA translation and implicate LARP1 as an important regulator of cell growth and proliferation.


Asunto(s)
Autoantígenos/metabolismo , Regulación de la Expresión Génica , Proteómica , Pirimidinas/metabolismo , ARN Mensajero/genética , Ribonucleoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autoantígenos/genética , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Ratones , Proteínas de Unión a Caperuzas de ARN/metabolismo , Ribonucleoproteínas/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Antígeno SS-B
5.
Genes Chromosomes Cancer ; 58(10): 723-730, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31102422

RESUMEN

High hyperdiploidy (HD) is the most common cytogenetic subtype of childhood acute lymphoblastic leukemia (ALL), and a higher incidence of HD has been reported in ALL patients with congenital cancer syndromes. We assessed the frequency of predisposing germline mutations in 57 HD-ALL patients from the California Childhood Leukemia Study via targeted sequencing of cancer-relevant genes. Three out of 57 patients (5.3%) harbored confirmed germline mutations that were likely causal, in NBN, ETV6, and FLT3, with an additional six patients (10.5%) harboring putative predisposing mutations that were rare in unselected individuals (<0.01% allele frequency in the Exome Aggregation Consortium, ExAC) and predicted functional (scaled CADD score ≥ 20) in known or potential ALL predisposition genes (SH2B3, CREBBP, PMS2, MLL, ABL1, and MYH9). Three additional patients carried rare and predicted damaging germline mutations in GAB2, a known activator of the ERK/MAPK and PI3K/AKT pathways and binding partner of PTPN11-encoded SHP2. The frequency of rare and predicted functional germline GAB2 mutations was significantly higher in our patients (2.6%) than in ExAC (0.28%, P = 4.4 × 10-3 ), an observation that was replicated in ALL patients from the TARGET project (P = .034). We cloned patient GAB2 mutations and expressed mutant proteins in HEK293 cells and found that frameshift mutation P621fs led to reduced SHP2 binding and ERK1/2 phosphorylation but significantly increased AKT phosphorylation, suggesting possible RAS-independent leukemogenic effects. Our results support a significant contribution of rare, high penetrance germline mutations to HD-ALL etiology, and pinpoint GAB2 as a putative novel ALL predisposition gene.


Asunto(s)
Frecuencia de los Genes , Mutación de Línea Germinal , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Niño , Mutación del Sistema de Lectura , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Penetrancia
7.
Proc Natl Acad Sci U S A ; 111(29): E2918-27, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002506

RESUMEN

The Ras/MAPK signaling cascade regulates various biological functions, including cell growth and proliferation. As such, this pathway is frequently deregulated in several types of cancer, including most cases of melanoma. RSK (p90 ribosomal S6 kinase) is a MAPK-activated protein kinase required for melanoma growth and proliferation, but relatively little is known about its exact function and the nature of its substrates. Herein, we used a quantitative phosphoproteomics approach to define the signaling networks regulated by RSK in melanoma. To more accurately predict direct phosphorylation substrates, we defined the RSK consensus phosphorylation motif and found significant overlap with the binding consensus of 14-3-3 proteins. We thus characterized the phospho-dependent 14-3-3 interactome in melanoma cells and found that a large proportion of 14-3-3 binding proteins are also potential RSK substrates. Our results show that RSK phosphorylates the tumor suppressor PDCD4 (programmed cell death protein 4) on two serine residues (Ser76 and Ser457) that regulate its subcellular localization and interaction with 14-3-3 proteins. We found that 14-3-3 binding promotes PDCD4 degradation, suggesting an important role for RSK in the inactivation of PDCD4 in melanoma. In addition to this tumor suppressor, our results suggest the involvement of RSK in a vast array of unexplored biological functions with relevance in oncogenesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Fosfoproteínas/metabolismo , Proteómica/métodos , Proteínas de Unión al ARN/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas 14-3-3/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Núcleo Celular/metabolismo , Secuencia de Consenso , Humanos , Melanoma/metabolismo , Melanoma/patología , Modelos Biológicos , Datos de Secuencia Molecular , Biblioteca de Péptidos , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Transporte de Proteínas , Proteolisis , Proteoma/metabolismo , Especificidad por Sustrato
8.
Biochem J ; 447(1): 159-66, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22827337

RESUMEN

The extent and duration of MAPK (mitogen-activated protein kinase) signalling govern a diversity of normal and aberrant cellular outcomes. Genetic and pharmacological disruption of the MAPK-activated kinase RSK (ribosomal S6 kinase) leads to elevated MAPK activity indicative of a RSK-dependent negative feedback loop. Using biochemical, pharmacological and quantitative MS approaches we show that RSK phosphorylates the Ras activator SOS1 (Son of Sevenless homologue 1) in cultured cells on two C-terminal residues, Ser(1134) and Ser(1161). Furthermore, we find that RSK-dependent SOS1 phosphorylation creates 14-3-3-binding sites. We show that mutating Ser(1134) and Ser(1161) disrupts 14-3-3 binding and modestly increases and extends MAPK activation. Together these data suggest that one mechanism whereby RSK negatively regulates MAPK activation is via site-specific SOS1 phosphorylation.


Asunto(s)
Proteínas 14-3-3/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteína SOS1/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Células 3T3 NIH , Fosforilación , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SOS1/química , Proteína SOS1/genética , Serina/química
9.
Cell Death Discov ; 9(1): 459, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104154

RESUMEN

CDK12 is a transcriptional cyclin-dependent kinase (CDK) that interacts with cyclin K to regulate different aspects of gene expression. The CDK12-cyclin K complex phosphorylates several substrates, including RNA polymerase II (Pol II), and thereby regulates transcription elongation, RNA splicing, as well as cleavage and polyadenylation. Because of its implication in cancer, including breast cancer and melanoma, multiple pharmacological inhibitors of CDK12 have been identified to date, including THZ531 and SR-4835. While both CDK12 inhibitors affect Poll II phosphorylation, we found that SR-4835 uniquely promotes cyclin K degradation via the proteasome. Using loss-of-function genetic screening, we found that SR-4835 cytotoxicity depends on a functional CUL4-RBX1-DDB1 ubiquitin ligase complex. Consistent with this, we show that DDB1 is required for cyclin K degradation, and that SR-4835 promotes DDB1 interaction with the CDK12-cyclin K complex. Docking studies and structure-activity relationship analyses of SR-4835 revealed the importance of the benzimidazole side-chain in molecular glue activity. Together, our results indicate that SR-4835 acts as a molecular glue that recruits the CDK12-cyclin K complex to the CUL4-RBX1-DDB1 ubiquitin ligase complex to target cyclin K for degradation.

10.
BMC Biol ; 9: 31, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21619587

RESUMEN

BACKGROUND: DNA methyltransferase 1 (DNMT1) has been shown to be phosphorylated on multiple serine and threonine residues, based on cell type and physiological conditions. Although recent studies have suggested that protein kinase C (PKC) may be involved, the individual contribution of PKC isoforms in their ability to phosphorylate DNMT1 remains unknown. The PKC family consists of at least 12 isoforms that possess distinct differences in structure, substrate requirement, expression and localization. RESULTS: Here we show that PKCα, ßI, ßII, δ, γ, η, ζ and µ preferentially phosphorylate the N-terminal domain of human DNMT1. No such phosphorylation of DNMT1 was observed with PKCε. Using PKCζ as a prototype model, we also found that PKC physically interacts with and phosphorylates DNMT1. In vitro phosphorylation assays conducted with recombinant fragments of DNMT1 showed that PKCζ preferentially phosphorylated the N-terminal region of DNMT1. The interaction of PKCζ with DNMT1 was confirmed by GST pull-down and co-immunoprecipitation experiments. Co-localization experiments by fluorescent microscopy further showed that endogenous PKCζ and DNMT1 were present in the same molecular complex. Endogenous PKCζ activity was also detected when DNMT1 was immunoprecipitated from HEK-293 cells. Overexpression of both PKCζ and DNMT1 in HEK-293 cells, but not of either alone, reduced the methylation status of genes distributed across the genome. Moreover, in vitro phosphorylation of DNMT1 by PKCζ reduced its methytransferase activity. CONCLUSIONS: Our results indicate that phosphorylation of human DNMT1 by PKC is isoform-specific and provides the first evidence of cooperation between PKCζ and DNMT1 in the control of the DNA methylation patterns of the genome.


Asunto(s)
Metilación de ADN , Proteína Quinasa C/metabolismo , Proteínas Represoras/metabolismo , Línea Celular , ADN/metabolismo , Células HeLa , Humanos , Fosforilación , Regiones Promotoras Genéticas , Mapeo de Interacción de Proteínas , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/análisis , Proteína Quinasa C/genética , Proteínas Represoras/análisis , Proteínas Represoras/genética , Regulación hacia Arriba
11.
Nat Commun ; 13(1): 6457, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309522

RESUMEN

Melanoma is the deadliest form of skin cancer and considered intrinsically resistant to chemotherapy. Nearly all melanomas harbor mutations that activate the RAS/mitogen-activated protein kinase (MAPK) pathway, which contributes to drug resistance via poorly described mechanisms. Herein we show that the RAS/MAPK pathway regulates the activity of cyclin-dependent kinase 12 (CDK12), which is a transcriptional CDK required for genomic stability. We find that melanoma cells harbor constitutively high CDK12 activity, and that its inhibition decreases the expression of long genes containing multiple exons, including many genes involved in DNA repair. Conversely, our results show that CDK12 inhibition promotes the expression of short genes with few exons, including many growth-promoting genes regulated by the AP-1 and NF-κB transcription factors. Inhibition of these pathways strongly synergize with CDK12 inhibitors to suppress melanoma growth, suggesting promising drug combinations for more effective melanoma treatment.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Línea Celular Tumoral
12.
JCI Insight ; 7(6)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35167498

RESUMEN

Dyslipidemia and autophagy have been implicated in the pathogenesis of blinding neovascular age-related macular degeneration (NV-AMD). VLDL receptor (VLDLR), expressed in photoreceptors with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acids. Since fatty acid uptake is reduced in Vldlr-/- tissues, more remain in circulation, and the retina is fuel deficient, driving the formation in mice of neovascular lesions reminiscent of retinal angiomatous proliferation (RAP), a subtype of NV-AMD. Nutrient scarcity and energy failure are classically mitigated by increasing autophagy. We found that excess circulating lipids restrained retinal autophagy, which contributed to pathological angiogenesis in the Vldlr-/- RAP model. Triglyceride-derived fatty acid sensed by free fatty acid receptor 1 (FFAR1) restricted autophagy and oxidative metabolism in photoreceptors. FFAR1 suppressed transcription factor EB (TFEB), a master regulator of autophagy and lipid metabolism. Reduced TFEB, in turn, decreased sirtuin-3 expression and mitochondrial respiration. Metabolomic signatures of mouse RAP-like retinas were consistent with a role in promoting angiogenesis. This signature was also found in human NV-AMD vitreous. Restoring photoreceptor autophagy in Vldlr-/- retinas, either pharmacologically or by deleting Ffar1, enhanced metabolic efficiency and suppressed pathological angiogenesis. Dysregulated autophagy by circulating lipids might therefore contribute to the energy failure of photoreceptors driving neovascular eye diseases, and FFAR1 may be a target for intervention.


Asunto(s)
Degeneración Macular , Neovascularización Retiniana , Animales , Autofagia , Proliferación Celular , Ácidos Grasos , Degeneración Macular/patología , Ratones , Neovascularización Patológica , Receptores Acoplados a Proteínas G , Neovascularización Retiniana/patología , Triglicéridos
13.
Biochem Biophys Res Commun ; 409(2): 187-92, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21565170

RESUMEN

DNA methylation plays a central role in the epigenetic regulation of gene expression during development and progression of cancer diseases. The inheritance of specific DNA methylation patterns are acquired in the early embryo and are specifically maintained after cellular replication via the DNA methyltransferase 1 (DNMT1). Recent studies have suggested that the enzymatic activity of DNMT1 is possibly modulated by phosphorylation of serine/threonine residues located in the N-terminal domain of the enzyme. In the present work, we report that cyclin-dependent kinases (CDKs) 1, 2 and 5 can phosphorylate Ser154 of human DNMT1 in vitro. Further evidence of phosphorylation of endogenous DNMT1 at position 154 by CDKs is also found in 293 cells treated with roscovitine, a specific inhibitor of CDK1, 2 and 5. To determine the importance of Ser154 phosphorylation, a mutant of DNMT1 encoding a single-point mutation at position 154 (S154A) was generated. This mutation induced a severe loss of enzymatic activity when compared to wild type DNMT1. Moreover, after treatment with 5-Aza-2'-Deoxycytidine (5-aza-dC), a faster decline in DNMT1 protein level was observed for HEK-293 cells expressing DNMT1(S154A) as compared to cells expressing wild type DNMT1. Our data suggest that phosphorylation of DNMT1 at Ser154 by CDKs is important for enzymatic activity and protein stability of DNMT1. Considering that tumour-associated cell cycle defects are often mediated by alterations in CDK activity, our results suggest that dysregulation of cell cycle via CDKs could induce abnormal phosphorylation of DNMT1 and lead to DNA hypermethylation often observed in cancer cells.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Estabilidad de Enzimas , Epigénesis Genética , Células HEK293 , Humanos , Neoplasias/enzimología , Neoplasias/genética , Fosforilación , Serina/genética , Serina/metabolismo
14.
Cell Rep ; 31(7): 107660, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32433969

RESUMEN

In human cells, the expression of ∼1,000 genes is modulated throughout the cell cycle. Although some of these genes are controlled by specific transcriptional programs, very little is known about their post-transcriptional regulation. Here, we analyze the expression signature associated with all 687 RNA-binding proteins (RBPs) and identify 39 that significantly correlate with cell cycle mRNAs. We find that NF45 and NF90 play essential roles in mitosis, and transcriptome analysis reveals that they are necessary for the expression of a subset of mitotic mRNAs. Using proteomics, we identify protein clusters associated with the NF45-NF90 complex, including components of Staufen-mediated mRNA decay (SMD). We show that depletion of SMD components increases the binding of mitotic mRNAs to the NF45-NF90 complex and rescues cells from mitotic defects. Together, our results indicate that the NF45-NF90 complex plays essential roles in mitosis by competing with the SMD machinery for a common set of mRNAs.


Asunto(s)
Mitosis/fisiología , Proteína del Factor Nuclear 45/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Estabilidad del ARN/fisiología , Línea Celular Tumoral , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Mitosis/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteína del Factor Nuclear 45/genética , Proteínas del Factor Nuclear 90/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
15.
Dev Cell ; 52(2): 210-222.e7, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31928973

RESUMEN

Most metazoan cells entering mitosis undergo characteristic rounding, which is important for accurate spindle positioning and chromosome separation. Rounding is driven by contractile tension generated by myosin motors in the sub-membranous actin cortex. Recent studies highlight that alongside myosin activity, cortical actin organization is a key regulator of cortex tension. Yet, how mitotic actin organization is controlled remains poorly understood. To address this, we characterized the F-actin interactome in spread interphase and round mitotic cells. Using super-resolution microscopy, we then screened for regulators of cortex architecture and identified the intermediate filament vimentin and the actin-vimentin linker plectin as unexpected candidates. We found that vimentin is recruited to the mitotic cortex in a plectin-dependent manner. We then showed that cortical vimentin controls actin network organization and mechanics in mitosis and is required for successful cell division in confinement. Together, our study highlights crucial interactions between cytoskeletal networks during cell division.


Asunto(s)
Citoesqueleto de Actina/fisiología , Actinas/metabolismo , Fenómenos Fisiológicos Celulares , Filamentos Intermedios/fisiología , Interfase/fisiología , Mitosis , Vimentina/metabolismo , Segregación Cromosómica , Células HeLa , Humanos
16.
Front Psychol ; 11: 566341, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117235

RESUMEN

BACKGROUND: Autonomic function has been linked to cognitive abilities in aging. Even in non-clinical states, a certain variability in heart rhythm regulation can be measured with QT dispersion (QTcD), an ECG marker of ventricular repolarization which has been linked to autonomic function and cardiovascular health. QTcD has been shown to be higher in individuals with mild cognitive impairment, and the highest in individuals with Alzheimer's disease. The goal of this study was to see if QTcD is associated with cognitive performance in healthy individuals. METHODS: Sixty-three healthy inactive older adults (> 60 years) completed an extensive cognitive assessment (including inhibition, divided attention, updating, working memory, and processing speed), a physical fitness assessment, and underwent a resting ECG. RESULTS: After controlling for age, sex, and education, QTcD significantly predicted global cognition (MoCA) scores (R 2 = 0.17, F ( 4 . 58 ) = 3.00, p < 0.03, ß = -0.36). Exploratory analysis on the MoCA subcomponents revealed a significant association between the visual/executive subcomponent and QTcD (R 2 = 0.12, F (1 .6 1) = 7.99, p < 0.01, ß = -0.34). In individuals with high QTcD, QTcD values were linked to executive functions (R 2 = 0.37), processing speed (R 2 = 0.34), and dual-task performances (R 2 = 0.47). No significant associations were found within the low QTcD group. CONCLUSION: This study shows an association between ventricular repolarization (QTcD) and cognitive performance, in particular speed and executive functions, in healthy older adults. The results provide further support for linking autonomic heart regulation and age-related cognitive changes, and suggest that deviations on ECG, even within-normal range, could help detect early cognitive deficits.

17.
Nat Commun ; 11(1): 3701, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709883

RESUMEN

Despite its importance in human cancers, including colorectal cancers (CRC), oncogenic KRAS has been extremely challenging to target therapeutically. To identify potential vulnerabilities in KRAS-mutated CRC, we characterize the impact of oncogenic KRAS on the cell surface of intestinal epithelial cells. Here we show that oncogenic KRAS alters the expression of a myriad of cell-surface proteins implicated in diverse biological functions, and identify many potential surface-accessible therapeutic targets. Cell surface-based loss-of-function screens reveal that ATP7A, a copper-exporter upregulated by mutant KRAS, is essential for neoplastic growth. ATP7A is upregulated at the surface of KRAS-mutated CRC, and protects cells from excess copper-ion toxicity. We find that KRAS-mutated cells acquire copper via a non-canonical mechanism involving macropinocytosis, which appears to be required to support their growth. Together, these results indicate that copper bioavailability is a KRAS-selective vulnerability that could be exploited for the treatment of KRAS-mutated neoplasms.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Cobre/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Disponibilidad Biológica , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ATPasas Transportadoras de Cobre/metabolismo , Femenino , Humanos , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Mutación
18.
Nat Cell Biol ; 22(7): 803-814, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32572169

RESUMEN

Cell shape is controlled by the submembranous cortex, an actomyosin network mainly generated by two actin nucleators: the Arp2/3 complex and the formin mDia1. Changes in relative nucleator activity may alter cortical organization, mechanics and cell shape. Here we investigate how nucleation-promoting factors mediate interactions between nucleators. In vitro, the nucleation-promoting factor SPIN90 promotes formation of unbranched filaments by Arp2/3, a process thought to provide the initial filament for generation of dendritic networks. Paradoxically, in cells, SPIN90 appears to favour a formin-dominated cortex. Our in vitro experiments reveal that this feature stems mainly from two mechanisms: efficient recruitment of mDia1 to SPIN90-Arp2/3 nucleated filaments and formation of a ternary SPIN90-Arp2/3-mDia1 complex that greatly enhances filament nucleation. Both mechanisms yield rapidly elongating filaments with mDia1 at their barbed ends and SPIN90-Arp2/3 at their pointed ends. Thus, in networks, SPIN90 lowers branching densities and increases the proportion of long filaments elongated by mDia1.


Asunto(s)
Citoesqueleto de Actina/fisiología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Forminas/metabolismo , Melanoma/patología , Proteínas Musculares/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Blástula/citología , Blástula/metabolismo , Forma de la Célula , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Forminas/genética , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas Musculares/genética , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
19.
Cancer Res ; 67(7): 3387-95, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17409449

RESUMEN

Gene therapy is a promising approach for cancer treatment; however, efficacy of current vectors remains insufficient. To improve the success of suicide gene therapy, we constructed a replication-competent adenoviral vector that has its protease gene deleted and expresses bacterial cytosine deaminase fused with bacterial uracil phosphoribosyltransferase (CU). The prodrug, 5-fluorocytosine, is transformed into the highly toxic and tissue-diffusible 5-fluorouracil by CU in infected cells. This vector is incapable of producing infectious particles but is able to undergo a single round of replication, thereby increasing transgene copy number and expression. In the presence of 5-FC, compared with the first-generation vector (AdCU), the replication-competent vector, Ad(dPS)CU-IRES-E1A, was significantly more efficacious for in vitro tumor cell killing and in bystander assays, whereas 25-fold fewer viral particles were required in a three-dimensional spheroid model. For in vivo experiments, in which virus was injected into preestablished intracranial glioma xenografts, followed by 5-FC treatment, mice receiving Ad(dPS)CU-IRES-E1A had significantly smaller tumors at 35 days postinjection as well as significantly longer median survival than mice treated with the replication-deficient, protease-deleted vector [Ad(dPS)CU]. In an immunocompetent syngeneic model, Ad(dPS)CU + 5-FC-treated mice had a median survival of only 23 days, whereas Ad(dPS)CU-IRES-E1A + 5-FC-treated animals had a survival of 57.1% at 365 days. In conclusion, Ad(dPS)CU-IRES-E1A in the presence of 5-FC produces more potent tumoricidal effects than its replication-deficient counterparts.


Asunto(s)
Adenoviridae/genética , Terapia Genética/métodos , Glioblastoma/terapia , Péptido Hidrolasas/deficiencia , Adenoviridae/enzimología , Adenoviridae/fisiología , Animales , Línea Celular Tumoral , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Flucitosina/farmacocinética , Fluorouracilo/farmacocinética , Fluorouracilo/farmacología , Amplificación de Genes , Vectores Genéticos/genética , Genoma Viral , Glioblastoma/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Péptido Hidrolasas/genética , Esferoides Celulares , Transgenes , Replicación Viral
20.
Cancer Res ; 78(9): 2191-2204, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29440170

RESUMEN

Metabolic reprogramming is a hallmark of cancer that includes increased glucose uptake and accelerated aerobic glycolysis. This phenotype is required to fulfill anabolic demands associated with aberrant cell proliferation and is often mediated by oncogenic drivers such as activated BRAF. In this study, we show that the MAPK-activated p90 ribosomal S6 kinase (RSK) is necessary to maintain glycolytic metabolism in BRAF-mutated melanoma cells. RSK directly phosphorylated the regulatory domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2), an enzyme that catalyzes the synthesis of fructose-2,6-bisphosphate during glycolysis. Inhibition of RSK reduced PFKFB2 activity and glycolytic flux in melanoma cells, suggesting an important role for RSK in BRAF-mediated metabolic rewiring. Consistent with this, expression of a phosphorylation-deficient mutant of PFKFB2 decreased aerobic glycolysis and reduced the growth of melanoma in mice. Together, these results indicate that RSK-mediated phosphorylation of PFKFB2 plays a key role in the metabolism and growth of BRAF-mutated melanomas.Significance: RSK promotes glycolytic metabolism and the growth of BRAF-mutated melanoma by driving phosphorylation of an important glycolytic enzyme. Cancer Res; 78(9); 2191-204. ©2018 AACR.


Asunto(s)
Melanoma/genética , Fosfofructoquinasa-2/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proliferación Celular/genética , Reprogramación Celular/genética , Glucosa/metabolismo , Glucólisis/genética , Células HeLa , Humanos , Melanoma/metabolismo , Melanoma/patología , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA