Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2118852119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727987

RESUMEN

Carbon storage and cycling in boreal forests-the largest terrestrial carbon store-is moderated by complex interactions between trees and soil microorganisms. However, existing methods limit our ability to predict how changes in environmental conditions will alter these associations and the essential ecosystem services they provide. To address this, we developed a metatranscriptomic approach to analyze the impact of nutrient enrichment on Norway spruce fine roots and the community structure, function, and tree-microbe coordination of over 350 root-associated fungal species. In response to altered nutrient status, host trees redefined their relationship with the fungal community by reducing sugar efflux carriers and enhancing defense processes. This resulted in a profound restructuring of the fungal community and a collapse in functional coordination between the tree and the dominant Basidiomycete species, and an increase in functional coordination with versatile Ascomycete species. As such, there was a functional shift in community dominance from Basidiomycetes species, with important roles in enzymatically cycling recalcitrant carbon, to Ascomycete species that have melanized cell walls that are highly resistant to degradation. These changes were accompanied by prominent shifts in transcriptional coordination between over 60 predicted fungal effectors, with more than 5,000 Norway spruce transcripts, providing mechanistic insight into the complex molecular dialogue coordinating host trees and their fungal partners. The host-microbe dynamics captured by this study functionally inform how these complex and sensitive biological relationships may mediate the carbon storage potential of boreal soils under changing nutrient conditions.


Asunto(s)
Ascomicetos , Basidiomycota , Micorrizas , Picea , Ascomicetos/metabolismo , Basidiomycota/metabolismo , Carbono/metabolismo , Ecosistema , Bosques , Micorrizas/genética , Micorrizas/fisiología , Picea/genética , Picea/microbiología , Suelo/química , Microbiología del Suelo , Taiga , Transcriptoma , Árboles/metabolismo , Árboles/microbiología
2.
Plant Physiol ; 189(4): 1943-1960, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35604104

RESUMEN

Leaf senescence can be induced by stress or aging, sometimes in a synergistic manner. It is generally acknowledged that the ability to withstand senescence-inducing conditions can provide plants with stress resilience. Although the signaling and transcriptional networks responsible for a delayed senescence phenotype, often referred to as a functional stay-green trait, have been actively investigated, very little is known about the subsequent metabolic adjustments conferring this aptitude to survival. First, using the individually darkened leaf (IDL) experimental setup, we compared IDLs of wild-type (WT) Arabidopsis (Arabidopsis thaliana) to several stay-green contexts, that is IDLs of two functional stay-green mutant lines, oresara1-2 (ore1-2) and an allele of phytochrome-interacting factor 5 (pif5), as well as to leaves from a WT plant entirely darkened (DP). We provide compelling evidence that arginine and ornithine, which accumulate in all stay-green contexts-likely due to the lack of induction of amino acids (AAs) transport-can delay the progression of senescence by fueling the Krebs cycle or the production of polyamines (PAs). Secondly, we show that the conversion of putrescine to spermidine (SPD) is controlled in an age-dependent manner. Thirdly, we demonstrate that SPD represses senescence via interference with ethylene signaling by stabilizing the ETHYLENE BINDING FACTOR1 and 2 (EBF1/2) complex. Taken together, our results identify arginine and ornithine as central metabolites influencing the stress- and age-dependent progression of leaf senescence. We propose that the regulatory loop between the pace of the AA export and the progression of leaf senescence provides the plant with a mechanism to fine-tune the induction of cell death in leaves, which, if triggered unnecessarily, can impede nutrient remobilization and thus plant growth and survival.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arginina/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ornitina/genética , Ornitina/metabolismo , Hojas de la Planta/metabolismo , Senescencia de la Planta , Factores de Transcripción/metabolismo
3.
Plant J ; 106(1): 258-274, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33423341

RESUMEN

Iron (Fe) is an essential element for the development and physiology of plants, owing to its presence in numerous proteins involved in central biological processes. Here, we established an exhaustive, manually curated inventory of genes encoding Fe-containing proteins in Arabidopsis thaliana, and summarized their subcellular localization, spatiotemporal expression and evolutionary age. We have currently identified 1068 genes encoding potential Fe-containing proteins, including 204 iron-sulfur (Fe-S) proteins, 446 haem proteins and 330 non-Fe-S/non-haem Fe proteins (updates of this atlas are available at https://conf.arabidopsis.org/display/COM/Atlas+of+Fe+containing+proteins). A fourth class, containing 88 genes for which iron binding is uncertain, is indexed as 'unclear'. The proteins are distributed in diverse subcellular compartments with strong differences per category. Interestingly, analysis of the gene age index showed that most genes were acquired early in plant evolutionary history and have progressively gained regulatory elements, to support the complex organ-specific and development-specific functions necessitated by the emergence of terrestrial plants. With this gene atlas, we provide a valuable and updateable tool for the research community that supports the characterization of the molecular actors and mechanisms important for Fe metabolism in plants. This will also help in selecting relevant targets for breeding or biotechnological approaches aiming at Fe biofortification in crops.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Hierro-Azufre/metabolismo , Arabidopsis/genética , Biofortificación , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Hierro-Azufre/genética
4.
Physiol Plant ; 169(2): 141-142, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32500552

RESUMEN

The emergence of yellow and red hued foliage in plants, which we commonly associate with vegetal decline or a foreshadowing of winter, signals the progression of a process known as leaf senescence. It is characterised by a series of carefully orchestrated degradation events, which liberate nutrients from senescing tissues and redistribute them to growing organs such as young leaves and reproductive structures. As the timing and execution of this process is essential to maximising the viability of succeeding plant generations and fruit production, it has tremendous implications for the agricultural industry. In this issue of Physiologia Plantarum, Zhang et al. (2020) describes the way in which a novel microRNA (miRNA) affects the timing of leaf senescence in tomato (Solanum lycopersicum) by modulating biosynthesis of the phytohormone cytokinin.


Asunto(s)
Citocininas , Solanum lycopersicum , Frutas , Reguladores del Crecimiento de las Plantas , Hojas de la Planta
5.
Physiol Plant ; 168(3): 529-530, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32105358

RESUMEN

Efforts to decipher the processes underpinning biological systems now have a plethora of approaches from which to choose. Transcriptomics and proteomics provide a global snapshot of the abundance of gene products in a sample, from which researchers can learn a great deal about the inner machinations of a cell. However, when attempting to piece together a roadmap of an organism's metabolism, these strategies illuminate only a portion of the cellular landscape, and the evidence provided is often once- or even twice-removed from the actual players (the metabolites) involved. In this issue of Physiologia Plantarum, Jia et al. (2020) used metabolomic approaches to directly analyse the molecular soup of substrates and products contained in plant cells (known as the metabolome) to unravel the metabolic and physiological differences separating a drought-sensitive and a drought-tolerant species of the ecologically and economically important woody plant, poplar.


Asunto(s)
Sequías , Populus , Metaboloma , Metabolómica , Proteómica
6.
Plant Physiol ; 177(1): 132-150, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29523713

RESUMEN

In plants, an individually darkened leaf initiates senescence much more rapidly than a leaf from a whole darkened plant. Combining transcriptomic and metabolomic approaches in Arabidopsis (Arabidopsis thaliana), we present an overview of the metabolic strategies that are employed in response to different darkening treatments. Under darkened plant conditions, the perception of carbon starvation drove a profound metabolic readjustment in which branched-chain amino acids and potentially monosaccharides released from cell wall loosening became important substrates for maintaining minimal ATP production. Concomitantly, the increased accumulation of amino acids with a high nitrogen-carbon ratio may provide a safety mechanism for the storage of metabolically derived cytotoxic ammonium and a pool of nitrogen for use upon returning to typical growth conditions. Conversely, in individually darkened leaf, the metabolic profiling that followed our 13C-enrichment assays revealed a temporal and differential exchange of metabolites, including sugars and amino acids, between the darkened leaf and the rest of the plant. This active transport could be the basis for a progressive metabolic shift in the substrates fueling mitochondrial activities, which are central to the catabolic reactions facilitating the retrieval of nutrients from the senescing leaf. We propose a model illustrating the specific metabolic strategies employed by leaves in response to these two darkening treatments, which support either rapid senescence or a strong capacity for survival.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Hojas de la Planta/fisiología , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Oscuridad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Luz , Metabolómica/métodos , Modelos Biológicos , Pigmentación , Hojas de la Planta/metabolismo , Almidón/metabolismo
7.
Physiol Plant ; 167(4): 469-470, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31762052

RESUMEN

Putrescine is a member of a group of aliphatic compounds, known as polyamines, which are derived from the breakdown of amino acids in living (and dead) cells. Along with the grimly named cadaverine, putrescine was discovered in 1885 by the German physician Ludwig Brieger, who identified these polyamines as the primary constituent of the foul odours we associate with the rot and putrification of flesh. From this morbid origin, it is difficult to believe that putrescine has since been recognised as having numerous beneficial roles for living cells, ranging from increasing the tolerance of plants to biotic and abiotic stresses to possible roles in treating major mood disorders in humans. In this issue of Physiologia Plantarum, Zhu et al. (2019) describes how the addition of putrescine to the roots of rice (Oryza sativa) can alter the building blocks of the cell wall and, in doing so, alleviate aluminium toxicity.


Asunto(s)
Oryza , Aluminio , Antídotos , Pared Celular , Etilenos , Putrescina
8.
Physiol Plant ; 166(4): 892-893, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31294874

RESUMEN

Drought is an increasingly common climatic event that can devastate ecosystems, as well as surrounding agricultural and forestry industries. Few places face this challenge more than Australia, where millennia of droughts linked to geography and climatic drivers, such as El Niño, have shaped the flora and fauna into forms predicated on resilience and economy. How an organism responds to these cyclic challenges is a combination of the inherent tolerance mechanisms encoded in their genome and outside influences, such as the effect of nutrients and symbiotic interactions. In this issue of Physiologia Plantarum, Tariq et al. (2019) describes how the presence of the element phosphorus can bolster the physiological and biochemical response of eucalypt seedlings to severe drought conditions.


Asunto(s)
Sequías , Genoma de Planta/genética , Fósforo/metabolismo , Plantones/genética , Plantones/metabolismo , Australia
9.
Physiol Plant ; 165(4): 671-672, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30919994

RESUMEN

It is difficult to overstate the role of wood in the story of humanity. In times that predate recorded history it provided shelter from the elements, light and warmth when burned, and a supple material with which early humans could craft their first tools. Today, it is still one of our chief building materials and an emerging industry is extending its applications through the development of novel biomaterials, such as cellulose fiber-derived nanocomposites. An article in this issue of Physiologia Plantarum (Johnsson et al. 2019) describes the influence the phytohormones auxin and gibberellic acid (GA) have on the process of wood formation, and reveals possible targets for optimizing cell wall properties in fiber cells.


Asunto(s)
Materiales Biocompatibles/química , Bosques , Pared Celular/química , Giberelinas/química , Ácidos Indolacéticos/química , Reguladores del Crecimiento de las Plantas/química
10.
Physiol Plant ; 165(2): 131-133, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30684290

RESUMEN

Barley (Hordeum vulgare), a vital crop to the food and beverage industry, is highly vulnerable to unstable conditions on the climatic horizon. An article in this special issue of Physiologia Plantarum by Mahalingam and Bregitzer (2019) describes the impact that individual and combined stresses linked to climate change could have on the agronomic source of one of our favourite libations, as well as offering achievable solutions that will be needed if crop yield and quality are to be maintained.


Asunto(s)
Cerveza , Cambio Climático , Hordeum/fisiología , Industrias , Estrés Fisiológico
11.
Physiol Plant ; 165(3): 445-447, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30788844

RESUMEN

Soils represent the largest and most stable carbon pools on Earth, exceeding even the carbon aggregate found in the atmosphere and global phytomass. However, our understanding of how CO2 travels from the soil to the atmosphere, and the role of plants in this journey, is not fully understood. An article in this issue of Physiologia Plantarum (Shimono et al. 2019) sheds light on this process and unearths the dramatic effect pH can have on the fate of CO2 in plants.


Asunto(s)
Dióxido de Carbono/metabolismo , Plantas/metabolismo , Atmósfera/química , Concentración de Iones de Hidrógeno , Suelo/química
12.
Physiol Plant ; 166(3): 709-711, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31215061

RESUMEN

Beneath the gardens, farmlands and forest floors that surround us, a hidden world blooms in careful cooperation and intense competition. The mutualistic symbiosis of the thread-like hyphae of fungi and plant roots (collectively termed mycorrhizae from the Greek mýkes - meaning 'fungus', and rhiza - for 'root') is present in the vast majority of plant species. As with most intimate relationships, this symbiosis functions on a principle of 'give and take'. As an autotroph, the plant is able to synthesize all the sugars it requires through photosynthesis; however, its immobility hinders its capacity to forage for nutrients vital for its growth and survival. With an expansive network of hyphae, the heterotrophic fungus is able to locate and remobilize water and nutrients, such as phosphorus (P) and nitrogen (N), and barter them for precious sugars with the plant. An article in this issue of Physiologia Plantarum (Zhao et al. 2019) describes alterations in the genetic programming that takes place in the plant root upon the establishment of this fascinating relationship, which has profound implications for plant productivity and soil management methods.


Asunto(s)
Micorrizas/fisiología , Raíces de Plantas/microbiología , Regulación de la Expresión Génica de las Plantas , Simbiosis/fisiología
13.
Plant Physiol ; 171(3): 2150-65, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208304

RESUMEN

Previous studies have identified a range of transcription factors that modulate retrograde regulation of mitochondrial and chloroplast functions in Arabidopsis (Arabidopsis thaliana). However, the relative importance of these regulators and whether they act downstream of separate or overlapping signaling cascades is still unclear. Here, we demonstrate that multiple stress-related signaling pathways, with distinct kinetic signatures, converge on overlapping gene sets involved in energy organelle function. The transcription factor ANAC017 is almost solely responsible for transcript induction of marker genes around 3 to 6 h after chemical inhibition of organelle function and is a key regulator of mitochondrial and specific types of chloroplast retrograde signaling. However, an independent and highly transient gene expression phase, initiated within 10 to 30 min after treatment, also targets energy organelle functions, and is related to touch and wounding responses. Metabolite analysis demonstrates that this early response is concurrent with rapid changes in tricarboxylic acid cycle intermediates and large changes in transcript abundance of genes encoding mitochondrial dicarboxylate carrier proteins. It was further demonstrated that transcription factors AtWRKY15 and AtWRKY40 have repressive regulatory roles in this touch-responsive gene expression. Together, our results show that several regulatory systems can independently affect energy organelle function in response to stress, providing different means to exert operational control.


Asunto(s)
Arabidopsis/fisiología , Cloroplastos/fisiología , Mitocondrias/fisiología , Estrés Fisiológico/fisiología , Antimicina A/farmacología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/efectos de los fármacos , Metabolismo Energético/genética , Fluoroacetatos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/genética , Plantas Modificadas Genéticamente , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Plant Physiol ; 172(4): 2132-2153, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27744300

RESUMEN

The functions of mitochondria during leaf senescence, a type of programmed cell death aimed at the massive retrieval of nutrients from the senescing organ to the rest of the plant, remain elusive. Here, combining experimental and analytical approaches, we showed that mitochondrial integrity in Arabidopsis (Arabidopsis thaliana) is conserved until the latest stages of leaf senescence, while their number drops by 30%. Adenylate phosphorylation state assays and mitochondrial respiratory measurements indicated that the leaf energy status also is maintained during this time period. Furthermore, after establishing a curated list of genes coding for products targeted to mitochondria, we analyzed in isolation their transcript profiles, focusing on several key mitochondrial functions, such as the tricarboxylic acid cycle, mitochondrial electron transfer chain, iron-sulfur cluster biosynthesis, transporters, as well as catabolic pathways. In tandem with a metabolomic approach, our data indicated that mitochondrial metabolism was reorganized to support the selective catabolism of both amino acids and fatty acids. Such adjustments would ensure the replenishment of α-ketoglutarate and glutamate, which provide the carbon backbones for nitrogen remobilization. Glutamate, being the substrate of the strongly up-regulated cytosolic glutamine synthase, is likely to become a metabolically limiting factor in the latest stages of developmental leaf senescence. Finally, an evolutionary age analysis revealed that, while branched-chain amino acid and proline catabolism are very old mitochondrial functions particularly enriched at the latest stages of leaf senescence, auxin metabolism appears to be rather newly acquired. In summation, our work shows that, during developmental leaf senescence, mitochondria orchestrate catabolic processes by becoming increasingly central energy and metabolic hubs.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Mitocondrias/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Arabidopsis/genética , Respiración de la Célula , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Mitocondriales , Genes de Plantas , Redes y Vías Metabólicas/genética , Metabolómica , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Hojas de la Planta/ultraestructura , Transcripción Genética , Transcriptoma/genética
15.
Plant Physiol ; 167(1): 228-50, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378695

RESUMEN

Diverse signaling pathways are activated by perturbation of mitochondrial function under different growth conditions.Mitochondria have emerged as an important organelle for sensing and coping with stress in addition to being the sites of important metabolic pathways. Here, responses to moderate light and drought stress were examined in different Arabidopsis (Arabidopsis thaliana) mutant plants lacking a functional alternative oxidase (alternative oxidase1a [aox1a]), those with reduced cytochrome electron transport chain capacity (T3/T7 bacteriophage-type RNA polymerase, mitochondrial, and plastidial [rpoTmp]), and double mutants impaired in both pathways (aox1a:rpoTmp). Under conditions considered optimal for growth, transcriptomes of aox1a and rpoTmp were distinct. Under adverse growth conditions, however, transcriptome changes in aox1a and rpoTmp displayed a highly significant overlap and were indicative of a common mitochondrial stress response and down-regulation of photosynthesis. This suggests that the role of mitochondria to support photosynthesis is provided through either the alternative pathway or the cytochrome pathway, and when either pathway is inhibited, such as under environmental stress, a common, dramatic, and succinct mitochondrial signal is activated to alter energy metabolism in both organelles. aox1a:rpoTmp double mutants grown under optimal conditions showed dramatic reductions in biomass production compared with aox1a and rpoTmp and a transcriptome that was distinct from aox1a or rpoTmp. Transcript data indicating activation of mitochondrial biogenesis in aox1a:rpoTmp were supported by a proteomic analysis of over 200 proteins. Under optimal conditions, aox1a:rpoTmp plants seemed to switch on many of the typical mitochondrial stress regulators. Under adverse conditions, aox1a:rpoTmp turned off these responses and displayed a biotic stress response. Taken together, these results highlight the diverse signaling pathways activated by the perturbation of mitochondrial function under different growth conditions.


Asunto(s)
Arabidopsis/metabolismo , Citocromos/fisiología , Transporte de Electrón/fisiología , Fenómenos Fisiológicos de las Plantas , Arabidopsis/fisiología , Respiración de la Célula/fisiología , Deshidratación/metabolismo , Perfilación de la Expresión Génica , Luz , Mitocondrias/metabolismo , Mitocondrias/fisiología , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología
16.
J Exp Bot ; 67(21): 6061-6075, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27811077

RESUMEN

In plant cells, mitochondria are major providers of energy and building blocks for growth and development as well as abiotic and biotic stress responses. They are encircled by two lipid membranes containing proteins that control mitochondrial function through the import of macromolecules and metabolites. Characterization of a novel ß-barrel protein, OUTER MEMBRANE PROTEIN 47 (OM47), unique to the green lineage and related to the voltage-dependent anion channel (VDAC) protein family, showed that OM47 can complement a VDAC mutant in yeast. Mutation of OM47 in Arabidopsis thaliana by T-DNA insertion had no effect on the import of proteins, such as the ß-barrel proteins translocase of the outer membrane 40 (TOM40) or sorting and assembly machinery 50 (SAM50), into mitochondria. Molecular and physiological analyses revealed a delay in chlorophyll breakdown, higher levels of starch, and a delay in the induction of senescence marker genes in the mutant lines. While there was a reduction of >90% in OM47 protein in mitochondria isolated from 3-week-old om47 mutants, in mitochondria isolated from 8-week-old plants OM47 levels were similar to that of the wild type. This recovery was achieved by an up-regulation of OM47 transcript abundance in the mutants. Combined, these results highlight a role in leaf senescence for this plant-specific ß-barrel protein, probably mediating the recovery and recycling of chloroplast breakdown products by transporting metabolic intermediates into and out of mitochondria.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Envejecimiento/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Técnicas de Inactivación de Genes , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Mutación , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/metabolismo
17.
Plant Cell ; 25(9): 3450-71, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24045017

RESUMEN

Plants require daily coordinated regulation of energy metabolism for optimal growth and survival and therefore need to integrate cellular responses with both mitochondrial and plastid retrograde signaling. Using a forward genetic screen to characterize regulators of alternative oxidase1a (rao) mutants, we identified RAO2/Arabidopsis NAC domain-containing protein17 (ANAC017) as a direct positive regulator of AOX1a. RAO2/ANAC017 is targeted to connections and junctions in the endoplasmic reticulum (ER) and F-actin via a C-terminal transmembrane (TM) domain. A consensus rhomboid protease cleavage site is present in ANAC017 just prior to the predicted TM domain. Furthermore, addition of the rhomboid protease inhibitor N-p-Tosyl-l-Phe chloromethyl abolishes the induction of AOX1a upon antimycin A treatment. Simultaneous fluorescent tagging of ANAC017 with N-terminal red fluorescent protein (RFP) and C-terminal green fluorescent protein (GFP) revealed that the N-terminal RFP domain migrated into the nucleus, while the C-terminal GFP tag remained in the ER. Genome-wide analysis of the transcriptional network regulated by RAO2/ANAC017 under stress treatment revealed that RAO2/ANAC017 function was necessary for >85% of the changes observed as a primary response to cytosolic hydrogen peroxide (H2O2), but only ~33% of transcriptional changes observed in response to antimycin A treatment. Plants with mutated rao2/anac017 were more stress sensitive, whereas a gain-of-function mutation resulted in plants that had lower cellular levels of H2O2 under untreated conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sitios de Unión , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Perfilación de la Expresión Génica , Genes Reporteros , Peróxido de Hidrógeno/farmacología , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión , Plantones/citología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
18.
Plant Cell ; 25(9): 3472-90, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24045019

RESUMEN

Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely candidate signaling molecules for MRR, the protein signaling components in plants remain largely unknown. Through meta-analysis of transcriptome data, we detected a set of genes that are common and robust targets of MRR and used them as a bait to identify its transcriptional regulators. In the upstream regions of these mitochondrial dysfunction stimulon (MDS) genes, we found a cis-regulatory element, the mitochondrial dysfunction motif (MDM), which is necessary and sufficient for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid analysis and electrophoretic mobility shift assays revealed that the transmembrane domain-containing no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 mediates MRR-induced expression of the MDS genes by direct interaction with the MDM cis-regulatory element and triggers increased oxidative stress tolerance. In conclusion, we characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Secuencias Reguladoras de Ácidos Nucleicos/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Sitios de Unión , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Perfilación de la Expresión Génica , Mitocondrias/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Paraquat/farmacología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Rotenona/farmacología , Plantones/efectos de los fármacos , Plantones/genética , Plantones/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
19.
Physiol Plant ; 172(3): 1420-1421, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34184276
20.
Physiol Plant ; 171(3): 307-308, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33624321
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA