Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918604

RESUMEN

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: Escherichia coli beta-galactosidase with inhibitor, SARS-CoV-2 virus RNA-dependent RNA polymerase with covalently bound nucleotide analog and SARS-CoV-2 virus ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. The quality of submitted ligand models and surrounding atoms were analyzed by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics and contact scores. A composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.

2.
Nucleic Acids Res ; 52(D1): D245-D254, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953312

RESUMEN

The Nucleic Acid Knowledgebase (nakb.org) is a new data resource, updated weekly, for experimentally determined 3D structures containing DNA and/or RNA nucleic acid polymers and their biological assemblies. NAKB indexes nucleic acid-containing structures derived from all major structure determination methods (X-ray, NMR and EM), including all held by the Protein Data Bank (PDB). As the planned successor to the Nucleic Acid Database (NDB), NAKB's design preserves all functionality of the NDB and provides novel nucleic acid-centric content, including structural and functional annotations, as well as annotations from and links to external resources. A variety of custom interactive tools have been developed to enable rapid exploration and drill-down of NAKB's content.


Asunto(s)
Conformación de Ácido Nucleico , Ácidos Nucleicos , ADN/química , Bases del Conocimiento , Ácidos Nucleicos/genética , ARN/química
3.
Nucleic Acids Res ; 51(D1): D488-D508, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36420884

RESUMEN

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), founding member of the Worldwide Protein Data Bank (wwPDB), is the US data center for the open-access PDB archive. As wwPDB-designated Archive Keeper, RCSB PDB is also responsible for PDB data security. Annually, RCSB PDB serves >10 000 depositors of three-dimensional (3D) biostructures working on all permanently inhabited continents. RCSB PDB delivers data from its research-focused RCSB.org web portal to many millions of PDB data consumers based in virtually every United Nations-recognized country, territory, etc. This Database Issue contribution describes upgrades to the research-focused RCSB.org web portal that created a one-stop-shop for open access to ∼200 000 experimentally-determined PDB structures of biological macromolecules alongside >1 000 000 incorporated Computed Structure Models (CSMs) predicted using artificial intelligence/machine learning methods. RCSB.org is a 'living data resource.' Every PDB structure and CSM is integrated weekly with related functional annotations from external biodata resources, providing up-to-date information for the entire corpus of 3D biostructure data freely available from RCSB.org with no usage limitations. Within RCSB.org, PDB structures and the CSMs are clearly identified as to their provenance and reliability. Both are fully searchable, and can be analyzed and visualized using the full complement of RCSB.org web portal capabilities.


Asunto(s)
Inteligencia Artificial , Bases de Datos de Proteínas , Proteínas , Aprendizaje Automático , Conformación Proteica , Proteínas/química , Reproducibilidad de los Resultados
4.
Nat Methods ; 18(2): 156-164, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33542514

RESUMEN

This paper describes outcomes of the 2019 Cryo-EM Model Challenge. The goals were to (1) assess the quality of models that can be produced from cryogenic electron microscopy (cryo-EM) maps using current modeling software, (2) evaluate reproducibility of modeling results from different software developers and users and (3) compare performance of current metrics used for model evaluation, particularly Fit-to-Map metrics, with focus on near-atomic resolution. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived by 13 participating teams from four benchmark maps, including three forming a resolution series (1.8 to 3.1 Å). The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual experiments and structure data archives such as the Protein Data Bank. We recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed cryo-EM map density.


Asunto(s)
Microscopía por Crioelectrón/métodos , Modelos Moleculares , Cristalografía por Rayos X , Conformación Proteica , Proteínas/química
5.
Nucleic Acids Res ; 49(D1): D437-D451, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33211854

RESUMEN

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.org. PDB data depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy, 3D electron microscopy and micro-electron diffraction. PDB data consumers accessing our web portals include researchers, educators and students studying fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. During the past 2 years, the research-focused RCSB PDB web portal (RCSB.org) has undergone a complete redesign, enabling improved searching with full Boolean operator logic and more facile access to PDB data integrated with >40 external biodata resources. New features and resources are described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Sustancias Macromoleculares/química , Conformación Proteica , Proteínas/química , Bioingeniería/métodos , Investigación Biomédica/métodos , Biotecnología/métodos , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Humanos , Sustancias Macromoleculares/metabolismo , Pandemias , Proteínas/genética , Proteínas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Programas Informáticos , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
J Biol Chem ; 296: 100560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33744287

RESUMEN

Cryogenic electron microscopy (cryo-EM) methods began to be used in the mid-1970s to study thin and periodic arrays of proteins. Following a half-century of development in cryo-specimen preparation, instrumentation, data collection, data processing, and modeling software, cryo-EM has become a routine method for solving structures from large biological assemblies to small biomolecules at near to true atomic resolution. This review explores the critical roles played by the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in partnership with the community to develop the necessary infrastructure to archive cryo-EM maps and associated models. Public access to cryo-EM structure data has in turn facilitated better understanding of structure-function relationships and advancement of image processing and modeling tool development. The partnership between the global cryo-EM community and PDB and EMDB leadership has synergistically shaped the standards for metadata, one-stop deposition of maps and models, and validation metrics to assess the quality of cryo-EM structures. The advent of cryo-electron tomography (cryo-ET) for in situ molecular cell structures at a broad resolution range and their correlations with other imaging data introduce new data archival challenges in terms of data size and complexity in the years to come.


Asunto(s)
Microscopía por Crioelectrón/métodos , Bases de Datos de Proteínas , Proteínas/química , Cristalografía por Rayos X , Conformación Proteica , Proteínas/ultraestructura
7.
Q Rev Biophys ; 51: e8, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-30912485

RESUMEN

In this review, we describe how the interplay among science, technology and community interests contributed to the evolution of four structural biology data resources. We present the method by which data deposited by scientists are prepared for worldwide distribution, and argue that data archiving in a trusted repository must be an integral part of any scientific investigation.


Asunto(s)
Curaduría de Datos/métodos , Bases de Datos de Proteínas , Conformación Proteica , Proteínas/química , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares
8.
Biochemistry ; 59(48): 4523-4532, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33205945

RESUMEN

We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A6-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A6-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively. The negative electrostatic potential of free A6-tract DNA is substantially enhanced compared to that of generic DNA. Shortening the A-tract by 1 bp is shown to "knock out" binding of the second αCTD through widening of the minor groove. Furthermore, in computationally derived structures with arginine 265 mutated to alanine in either αCTD, either with or without the "knockout" DNA mutation, contact with the DNA is perturbed, highlighting the importance of arginine 265 in achieving αCTD-DNA binding. These results demonstrate that the importance of the DNA shape in sequence-dependent recognition of DNA by RNA polymerase is comparable to that of certain transcription factors.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Proteína Receptora de AMP Cíclico/química , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Técnicas de Inactivación de Genes , Genes Bacterianos , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Dominios Proteicos , Electricidad Estática
9.
J Struct Biol ; 204(1): 96-108, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30017700

RESUMEN

An evaluation system and a web infrastructure were developed for the second cryo-EM model challenge. The evaluation system includes tools to validate stereo-chemical plausibility of submitted models, check their fit to the corresponding density maps, estimate their overall and per-residue accuracy, and assess their similarity to reference cryo-EM or X-ray structures as well as other models submitted in this challenge. The web infrastructure provides a convenient interface for analyzing models at different levels of detail. It includes interactively sortable tables of evaluation scores for different subsets of models and different sublevels of structure organization, and a suite of visualization tools facilitating model analysis. The results are publicly accessible at http://model-compare.emdatabank.org.


Asunto(s)
Microscopía por Crioelectrón/métodos , Proteínas/ultraestructura , Modelos Moleculares , Conformación Proteica
10.
Nucleic Acids Res ; 44(D1): D396-403, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26578576

RESUMEN

Three-dimensional Electron Microscopy (3DEM) has become a key experimental method in structural biology for a broad spectrum of biological specimens from molecules to cells. The EMDataBank project provides a unified portal for deposition, retrieval and analysis of 3DEM density maps, atomic models and associated metadata (emdatabank.org). We provide here an overview of the rapidly growing 3DEM structural data archives, which include maps in EM Data Bank and map-derived models in the Protein Data Bank. In addition, we describe progress and approaches toward development of validation protocols and methods, working with the scientific community, in order to create a validation pipeline for 3DEM data.


Asunto(s)
Bases de Datos Factuales , Imagenología Tridimensional , Sustancias Macromoleculares/química , Microscopía Electrónica , Bases de Datos de Proteínas , Modelos Moleculares , Proteínas/química
11.
EBioMedicine ; 104: 105136, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723554

RESUMEN

BACKGROUND: Anti-MDA5 (Melanoma differentiation-associated protein-5) positive dermatomyositis (MDA5+-DM) is characterised by rapidly progressive interstitial lung disease (ILD) and high mortality. MDA5 is an RNA sensor and a key pattern recognition receptor for the SARS-CoV-2 virus. METHODS: This is a retrospective observational study of a surge in MDA5 autoimmunity, as determined using a 15 muscle-specific autoantibodies (MSAs) panel, between Janurary 2018 and December 2022 in Yorkshire, UK. MDA5-positivity was correlated with clinical features and outcome, and regional SARS-CoV-2 positivity and vaccination rates. Gene expression patterns in COVID-19 were compared with autoimmune lung disease and idiopathic pulmonary fibrosis (IPF) to gain clues into the genesis of the observed MDA5+-DM outbreak. FINDINGS: Sixty new anti-MDA5+, but not other MSAs surged between 2020 and 2022, increasing from 0.4% in 2019 to 2.1% (2020), 4.8% (2021) and 1.7% (2022). Few (8/60) had a prior history of confirmed COVID-19, peak rates overlapped with regional SARS-COV-2 community positivity rates in 2021, and 58% (35/60) had received anti-SARS-CoV-2 vaccines. 25/60 cases developed ILD which rapidly progression with death in 8 cases. Among the 35/60 non-ILD cases, 14 had myositis, 17 Raynaud phenomena and 10 had dermatomyositis spectrum rashes. Transcriptomic studies showed strong IFIH1 (gene encoding for MDA5) induction in COVID-19 and autoimmune-ILD, but not IPF, and IFIH1 strongly correlated with an IL-15-centric type-1 interferon response and an activated CD8+ T cell signature that is an immunologic hallmark of progressive ILD in the setting of systemic autoimmune rheumatic diseases. The IFIH1 rs1990760TT variant blunted such response. INTERPRETATION: A distinct pattern of MDA5-autoimmunity cases surged contemporaneously with circulation of the SARS-COV-2 virus during COVID-19. Bioinformatic insights suggest a shared immunopathology with known autoimmune lung disease mechanisms. FUNDING: This work was supported in part by the National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), and in part by the National Institutes of Health (NIH) grant R01-AI155696 and pilot awards from the UC Office of the President (UCOP)-RGPO (R00RG2628, R00RG2642 and R01RG3780) to P.G. S.S was supported in part by R01-AI141630 (to P.G) and in part through funds from the American Association of Immunologists (AAI) Intersect Fellowship Program for Computational Scientists and Immunologists.


Asunto(s)
Autoanticuerpos , Autoinmunidad , COVID-19 , Helicasa Inducida por Interferón IFIH1 , Enfermedades Pulmonares Intersticiales , SARS-CoV-2 , Humanos , COVID-19/inmunología , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/inmunología , Enfermedades Pulmonares Intersticiales/inmunología , Enfermedades Pulmonares Intersticiales/genética , SARS-CoV-2/inmunología , Masculino , Femenino , Persona de Mediana Edad , Autoanticuerpos/inmunología , Anciano , Estudios Retrospectivos , Pandemias , Dermatomiositis/inmunología , Dermatomiositis/genética , Adulto
12.
J Mol Biol ; : 168546, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38508301

RESUMEN

IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (wwpdb.org/task/hybrid). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.

13.
ArXiv ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38076521

RESUMEN

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and consensus recommendations resulting from the workshop. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.

14.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38358351

RESUMEN

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Asunto(s)
Curaduría de Datos , Microscopía por Crioelectrón/métodos
15.
Res Sq ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38343795

RESUMEN

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: E. coli beta-galactosidase with inhibitor, SARS-CoV-2 RNA-dependent RNA polymerase with covalently bound nucleotide analog, and SARS-CoV-2 ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. We found that (1) the quality of submitted ligand models and surrounding atoms varied, as judged by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics, and contact scores, and (2) a composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.

17.
Nucleic Acids Res ; 39(Database issue): D456-64, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20935055

RESUMEN

Cryo-electron microscopy reconstruction methods are uniquely able to reveal structures of many important macromolecules and macromolecular complexes. EMDataBank.org, a joint effort of the Protein Data Bank in Europe (PDBe), the Research Collaboratory for Structural Bioinformatics (RCSB) and the National Center for Macromolecular Imaging (NCMI), is a global 'one-stop shop' resource for deposition and retrieval of cryoEM maps, models and associated metadata. The resource unifies public access to the two major archives containing EM-based structural data: EM Data Bank (EMDB) and Protein Data Bank (PDB), and facilitates use of EM structural data of macromolecules and macromolecular complexes by the wider scientific community.


Asunto(s)
Microscopía por Crioelectrón , Bases de Datos Factuales , Sustancias Macromoleculares/química , Proteínas/química , Bases de Datos de Proteínas , Sustancias Macromoleculares/ultraestructura , Modelos Moleculares , Proteínas/ultraestructura
18.
medRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961408

RESUMEN

Background: Anti-MDA5 (Melanoma differentiation-associated protein-5) positive dermatomyositis (MDA5 + -DM) is characterised by rapidly progressive interstitial lung disease (ILD) and high mortality. MDA5 senses single-stranded RNA and is a key pattern recognition receptor for the SARS-CoV-2 virus. Methods: This is a retrospective observational study of a surge in MDA5 autoimmunity, as determined using a 15 muscle-specific autoantibodies (MSAs) panel, between Janurary 2018-December 2022 in Yorkshire, UK. MDA5-positivity was correlated with clinical features and outcome, and regional SARS-CoV-2 positivity and vaccination rates. Gene expression patterns in COVID-19 were compared with autoimmune lung disease and idiopathic pulmonary fibrosis (IPF) to gain clues into the genesis of the observed MDA5 + -DM outbreak. Results: Sixty new anti-MDA5+, but not other MSAs surged between 2020-2022, increasing from 0.4% in 2019 to 2.1% (2020), 4.8% (2021) and 1.7% (2022). Few (8/60) had a prior history of confirmed COVID-19, peak rates overlapped with regional SARS-COV-2 community positivity rates in 2021, and 58% (35/60) had received anti-SARS-CoV-2 RNA vaccines. Few (8/60) had a prior history of COVID-19, whereas 58% (35/60) had received anti-SARS-CoV-2 RNA vaccines. 25/60 cases developed ILD which rapidly progression with death in 8 cases. Among the 35/60 non-ILD cases, 14 had myositis, 17 Raynaud phenomena and 10 had dermatomyositis spectrum rashes. Transcriptomic studies showed strong IFIH1 (gene encoding for MDA5) induction in COVID-19 and autoimmune-ILD, but not IPF, and IFIH1 strongly correlated with an IL-15-centric type-1 interferon response and an activated CD8+ T cell signature that is an immunologic hallmark of progressive ILD in the setting of systemic autoimmune rheumatic diseases. The IFIH1 rs1990760TT variant blunted such response. Conclusions: A distinct pattern of MDA5-autoimmunity cases surged contemporaneously with circulation of the SARS-COV-2 virus during COVID-19. Bioinformatic insights suggest a shared immunopathology with known autoimmune lung disease mechanisms.

19.
Proc Natl Acad Sci U S A ; 106(47): 19830-5, 2009 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19903881

RESUMEN

We present the experimentally determined 3D structure of an intact activator-dependent transcription initiation complex comprising the Escherichia coli catabolite activator protein (CAP), RNA polymerase holoenzyme (RNAP), and a DNA fragment containing positions -78 to +20 of a Class I CAP-dependent promoter with a CAP site at position -61.5 and a premelted transcription bubble. A 20-A electron microscopy reconstruction was obtained by iterative projection-based matching of single particles visualized in carbon-sandwich negative stain and was fitted using atomic coordinate sets for CAP, RNAP, and DNA. The structure defines the organization of a Class I CAP-RNAP-promoter complex and supports previously proposed interactions of CAP with RNAP alpha subunit C-terminal domain (alphaCTD), interactions of alphaCTD with sigma(70) region 4, interactions of CAP and RNAP with promoter DNA, and phased-DNA-bend-dependent partial wrapping of DNA around the complex. The structure also reveals the positions and shapes of species-specific domains within the RNAP beta', beta, and sigma(70) subunits.


Asunto(s)
Proteína Receptora de AMP Cíclico/ultraestructura , ADN Bacteriano/ultraestructura , ARN Polimerasas Dirigidas por ADN/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Secuencia de Bases , Proteína Receptora de AMP Cíclico/química , ADN Bacteriano/química , ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Sustancias Macromoleculares/química , Modelos Moleculares , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Subunidades de Proteína/química , Transcripción Genética
20.
Life (Basel) ; 12(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35455031

RESUMEN

In this review, we describe the creation of the Nucleic Acid Database (NDB) at Rutgers University and how it became a testbed for the current infrastructure of the RCSB Protein Data Bank. We describe some of the special features of the NDB and how it has been used to enable research. Plans for the next phase as the Nucleic Acid Knowledgebase (NAKB) are summarized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA