Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35297968

RESUMEN

Vascular networks comprise endothelial cells and mural cells, which include pericytes and smooth muscle cells. To elucidate the mechanisms controlling mural cell recruitment during development and tissue regeneration, we studied zebrafish caudal fin arteries. Mural cells colonizing arteries proximal to the body wrapped around them, whereas those in more distal regions extended protrusions along the proximo-distal vascular axis. Both cell populations expressed platelet-derived growth factor receptor ß (pdgfrb) and the smooth muscle cell marker myosin heavy chain 11a (myh11a). Most wrapping cells in proximal locations additionally expressed actin alpha2, smooth muscle (acta2). Loss of Pdgfrb signalling specifically decreased mural cell numbers at the vascular front. Using lineage tracing, we demonstrate that precursor cells located in periarterial regions and expressing Pgdfrb can give rise to mural cells. Studying tissue regeneration, we did not find evidence that newly formed mural cells were derived from pre-existing cells. Together, our findings reveal conserved roles for Pdgfrb signalling in development and regeneration, and suggest a limited capacity of mural cells to self-renew or contribute to other cell types during tissue regeneration.


Asunto(s)
Miocitos del Músculo Liso , Pericitos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Proteínas de Pez Cebra , Pez Cebra , Animales , Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35088848

RESUMEN

Endothelial cells emerge from the atrioventricular canal to form coronary blood vessels in juvenile zebrafish hearts. We find that pdgfrb is first expressed in the epicardium around the atrioventricular canal and later becomes localized mainly in the mural cells. pdgfrb mutant fish show severe defects in mural cell recruitment and coronary vessel development. Single-cell RNA sequencing analyses identified pdgfrb+ cells as epicardium-derived cells (EPDCs) and mural cells. Mural cells associated with coronary arteries also express cxcl12b and smooth muscle cell markers. Interestingly, these mural cells remain associated with coronary arteries even in the absence of Pdgfrß, although smooth muscle gene expression is downregulated. We find that pdgfrb expression dynamically changes in EPDCs of regenerating hearts. Differential gene expression analyses of pdgfrb+ EPDCs and mural cells suggest that they express genes that are important for regeneration after heart injuries. mdka was identified as a highly upregulated gene in pdgfrb+ cells during heart regeneration. However, pdgfrb but not mdka mutants show defects in heart regeneration after amputation. Our results demonstrate that heterogeneous pdgfrb+ cells are essential for coronary development and heart regeneration.


Asunto(s)
Vasos Coronarios/crecimiento & desarrollo , Vasos Coronarios/metabolismo , Corazón/fisiología , Organogénesis/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Regeneración/fisiología , Animales , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Miocitos del Músculo Liso/metabolismo , Pericardio/metabolismo , Pez Cebra/metabolismo , Pez Cebra/fisiología
3.
Nucleic Acids Res ; 51(13): 6966-6980, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37246708

RESUMEN

Prime editing systems have enabled the incorporation of precise edits within a genome without introducing double strand breaks. Previous studies defined an optimal primer binding site (PBS) length for the pegRNA of ∼13 nucleotides depending on the sequence composition. However, optimal PBS length characterization has been based on prime editing outcomes using plasmid or lentiviral expression systems. In this study, we demonstrate that for prime editor (PE) ribonucleoprotein complexes, the auto-inhibitory interaction between the PBS and the spacer sequence affects pegRNA binding efficiency and target recognition. Destabilizing this auto-inhibitory interaction by reducing the complementarity between the PBS-spacer region enhances prime editing efficiency in multiple prime editing formats. In the case of end-protected pegRNAs, a shorter PBS length with a PBS-target strand melting temperature near 37°C is optimal in mammalian cells. Additionally, a transient cold shock treatment of the cells post PE-pegRNA delivery further increases prime editing outcomes for pegRNAs with optimized PBS lengths. Finally, we show that prime editor ribonucleoprotein complexes programmed with pegRNAs designed using these refined parameters efficiently correct disease-related genetic mutations in patient-derived fibroblasts and efficiently install precise edits in primary human T cells and zebrafish.


Asunto(s)
Frío , Edición Génica , Pez Cebra , Animales , Humanos , Sitios de Unión , Respuesta al Choque por Frío , Sistemas CRISPR-Cas , Mamíferos , Ribonucleoproteínas , Pez Cebra/genética
4.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34751773

RESUMEN

Pericytes reside in capillary beds where they share a basement membrane with endothelial cells and regulate their function. However, little is known about embryonic pericyte development, in part, due to lack of specific molecular markers and genetic tools. Here, we applied single cell RNA-sequencing (scRNA-seq) of platelet derived growth factor beta (pdgfrb)-positive cells to molecularly characterize pericytes in zebrafish larvae. scRNA-seq revealed zebrafish cells expressing mouse pericyte gene orthologs, and comparison with bulk RNA-seq from wild-type and pdgfrb mutant larvae further refined a pericyte gene set. Subsequent integration with mouse pericyte scRNA-seq profiles revealed a core set of conserved pericyte genes. Using transgenic reporter lines, we validated pericyte expression of two genes identified in our analysis: NDUFA4 mitochondrial complex associated like 2a (ndufa4l2a), and potassium voltage-gated channel, Isk-related family, member 4 (kcne4). Both reporter lines exhibited pericyte expression in multiple anatomical locations, and kcne4 was also detected in a subset of vascular smooth muscle cells. Thus, our integrated molecular analysis revealed a molecular profile for zebrafish pericytes and allowed us to develop new tools to observe these cells in vivo.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/genética , Mutación , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/biosíntesis , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
Dev Biol ; 479: 11-22, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34310924

RESUMEN

Platelet derived growth factor beta and its receptor, Pdgfrb, play essential roles in the development of vascular mural cells, including pericytes and vascular smooth muscle cells. To determine if this role was conserved in zebrafish, we analyzed pdgfb and pdgfrb mutant lines. Similar to mouse, pdgfb and pdgfrb mutant zebrafish lack brain pericytes and exhibit anatomically selective loss of vascular smooth muscle coverage. Despite these defects, pdgfrb mutant zebrafish did not otherwise exhibit circulatory defects at larval stages. However, beginning at juvenile stages, we observed severe cranial hemorrhage and vessel dilation associated with loss of pericytes and vascular smooth muscle cells in pdgfrb mutants. Similar to mouse, pdgfrb mutant zebrafish also displayed structural defects in the glomerulus, but normal development of hepatic stellate cells. We also noted defective mural cell investment on coronary vessels with concomitant defects in their development. Together, our studies support a conserved requirement for Pdgfrb signaling in mural cells. In addition, these zebrafish mutants provide an important model for definitive investigation of mural cells during early embryonic stages without confounding secondary effects from circulatory defects.


Asunto(s)
Músculo Liso Vascular/metabolismo , Pericitos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Diferenciación Celular , Vasos Coronarios/metabolismo , Desarrollo Embrionario , Músculo Liso Vascular/embriología , Miocitos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Proteínas Proto-Oncogénicas c-sis/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
6.
Circ Res ; 126(7): 875-888, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32065070

RESUMEN

RATIONALE: Significant progress has revealed transcriptional inputs that underlie regulation of artery and vein endothelial cell fates. However, little is known concerning genome-wide regulation of this process. Therefore, such studies are warranted to address this gap. OBJECTIVE: To identify and characterize artery- and vein-specific endothelial enhancers in the human genome, thereby gaining insights into mechanisms by which blood vessel identity is regulated. METHODS AND RESULTS: Using chromatin immunoprecipitation and deep sequencing for markers of active chromatin in human arterial and venous endothelial cells, we identified several thousand artery- and vein-specific regulatory elements. Computational analysis revealed that NR2F2 (nuclear receptor subfamily 2, group F, member 2) sites were overrepresented in vein-specific enhancers, suggesting a direct role in promoting vein identity. Subsequent integration of chromatin immunoprecipitation and deep sequencing data sets with RNA sequencing revealed that NR2F2 regulated 3 distinct aspects related to arteriovenous identity. First, consistent with previous genetic observations, NR2F2 directly activated enhancer elements flanking cell cycle genes to drive their expression. Second, NR2F2 was essential to directly activate vein-specific enhancers and their associated genes. Our genomic approach further revealed that NR2F2 acts with ERG (ETS-related gene) at many of these sites to drive vein-specific gene expression. Finally, NR2F2 directly repressed only a small number of artery enhancers in venous cells to prevent their activation, including a distal element upstream of the artery-specific transcription factor, HEY2 (hes related family bHLH transcription factor with YRPW motif 2). In arterial endothelial cells, this enhancer was normally bound by ERG, which was also required for arterial HEY2 expression. By contrast, in venous endothelial cells, NR2F2 was bound to this site, together with ERG, and prevented its activation. CONCLUSIONS: By leveraging a genome-wide approach, we revealed mechanistic insights into how NR2F2 functions in multiple roles to maintain venous identity. Importantly, characterization of its role at a crucial artery enhancer upstream of HEY2 established a novel mechanism by which artery-specific expression can be achieved.


Asunto(s)
Arterias/metabolismo , Factor de Transcripción COUP II/genética , Células Endoteliales/metabolismo , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Venas/metabolismo , Arterias/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factor de Transcripción COUP II/metabolismo , Células Cultivadas , Inmunoprecipitación de Cromatina/métodos , Regulación de la Expresión Génica , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Venas/citología
7.
Dev Growth Differ ; 63(9): 523-535, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34716915

RESUMEN

Lymphatic valves develop from pre-existing endothelial cells through a step-wise process involving complex changes in cell shape and orientation, along with extracellular matrix interactions, to form two intraluminal leaflets. Once formed, valves prevent back-flow within the lymphatic system to ensure drainage of interstitial fluid back into the circulatory system, thereby serving a critical role in maintaining fluid homeostasis. Despite the extensive anatomical characterization of lymphatic systems across numerous genus and species dating back several hundred years, valves were largely thought to be phylogenetically restricted to mammals. Accordingly, most insights into molecular and genetic mechanisms involved in lymphatic valve development have derived from mouse knockouts, as well as rare diseases in humans. However, we have recently used a combination of imaging and genetic analysis in the zebrafish to demonstrate that valves are a conserved feature of the teleost lymphatic system. Here, we provide a historical overview of comparative lymphatic valve anatomy together with recent efforts to define molecular pathways that contribute to lymphatic valve morphogenesis. Finally, we integrate our findings in zebrafish with previous work and highlight the benefits that this model provides for investigating lymphatic valve development.


Asunto(s)
Vasos Linfáticos , Pez Cebra , Animales , Células Endoteliales , Homeostasis , Ratones , Morfogénesis , Pez Cebra/genética
8.
Nucleic Acids Res ; 47(8): 4169-4180, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30892626

RESUMEN

Type V CRISPR-Cas12a systems provide an alternate nuclease platform to Cas9, with potential advantages for specific genome editing applications. Here we describe improvements to the Cas12a system that facilitate efficient targeted mutagenesis in mammalian cells and zebrafish embryos. We show that engineered variants of Cas12a with two different nuclear localization sequences (NLS) on the C terminus provide increased editing efficiency in mammalian cells. Additionally, we find that pre-crRNAs comprising a full-length direct repeat (full-DR-crRNA) sequence with specific stem-loop G-C base substitutions exhibit increased editing efficiencies compared with the standard mature crRNA framework. Finally, we demonstrate in zebrafish embryos that the improved LbCas12a and FnoCas12a nucleases in combination with these modified crRNAs display high mutagenesis efficiencies and low toxicity when delivered as ribonucleoprotein complexes at high concentration. Together, these results define a set of enhanced Cas12a components with broad utility in vertebrate systems.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas/genética , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Ribonucleoproteínas/genética , Animales , Secuencia de Bases , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Embrión no Mamífero , Endonucleasas/metabolismo , Células HEK293 , Células HeLa , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Secuencias Invertidas Repetidas , Células Jurkat , Células K562 , Señales de Localización Nuclear , Conformación de Ácido Nucleico , Plásmidos/química , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Ribonucleoproteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Dev Biol ; 453(1): 34-47, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31199900

RESUMEN

Vascular smooth muscle of the head derives from neural crest, but developmental mechanisms and early transcriptional drivers of the vSMC lineage are not well characterized. We find that in early development, the transcription factor foxc1b is expressed in mesenchymal cells that associate with the vascular endothelium. Using timelapse imaging, we observe that foxc1b expressing mesenchymal cells differentiate into acta2 expressing vascular mural cells. We show that in zebrafish, while foxc1b is co-expressed in acta2 positive smooth muscle cells that associate with large diameter vessels, it is not co-expressed in capillaries where pdgfrß positive pericytes are located. In addition to being an early marker of the lineage, foxc1 is essential for vSMC differentiation; we find that foxc1 loss of function mutants have defective vSMC differentiation and that early genetic ablation of foxc1b or acta2 expressing populations blocks vSMC differentiation. Furthermore, foxc1 is expressed upstream of acta2 and is required for acta2 expression in vSMCs. Using RNA-Seq we determine an enriched intersectional gene expression profile using dual expression of foxc1b and acta2 to identify novel vSMC markers. Taken together, our data suggests that foxc1 is a marker of vSMCs and plays a critical functional role in promoting their differentiation.


Asunto(s)
Diferenciación Celular , Embrión no Mamífero/citología , Factores de Transcripción Forkhead/metabolismo , Cabeza/irrigación sanguínea , Cabeza/embriología , Músculo Liso Vascular/citología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular/genética , Embrión no Mamífero/metabolismo , Endotelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo , Transcriptoma/genética , Regulación hacia Arriba , Pez Cebra/genética
10.
Development ; 143(20): 3796-3805, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27578780

RESUMEN

Vascular endothelial growth factor a (Vegfa) is essential for blood vessel formation and can induce activation of numerous signaling effectors in endothelial cells. However, it is unclear how and where these function in developmental contexts during vascular morphogenesis. To address this issue, we have visualized activation of presumptive Vegfa effectors at single-cell resolution in zebrafish blood vessels. From these studies, we find that phosphorylation of the serine/threonine kinase ERK (pERK) preferentially occurs in endothelial cells undergoing angiogenesis, but not in committed arterial endothelial cells. pERK in endothelial cells was ectopically induced by Vegfa and lost in Vegfa signaling mutants. Both chemical and endothelial autonomous inhibition of ERK prevented endothelial sprouting, but did not prevent initial artery differentiation. Timed chemical inhibition during angiogenesis caused a loss of genes implicated in coordinating tip/stalk cell behaviors, including flt4 and, at later stages, dll4 ERK inhibition also blocked excessive angiogenesis and ectopic flt4 expression in Notch-deficient blood vessels. Together, these studies implicate ERK as a specific effector of Vegfa signaling in the induction of angiogenic genes during sprouting.


Asunto(s)
Arterias/citología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Animales Modificados Genéticamente , Arterias/metabolismo , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Hibridación in Situ , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
11.
Development ; 143(20): 3785-3795, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27621059

RESUMEN

Vascular endothelial growth factor C (Vegfc) activates its receptor, Flt4, to induce lymphatic development. However, the signals that act downstream of Flt4 in this context in vivo remain unclear. To understand Flt4 signaling better, we generated zebrafish bearing a deletion in the Flt4 cytoplasmic domain that eliminates tyrosines Y1226 and 1227. Embryos bearing this deletion failed to initiate sprouting or differentiation of trunk lymphatic vessels and did not form a thoracic duct. Deletion of Y1226/7 prevented ERK phosphorylation in lymphatic progenitors, and ERK inhibition blocked trunk lymphatic sprouting and differentiation. Conversely, endothelial autonomous ERK activation rescued lymphatic sprouting and differentiation in flt4 mutants. Interestingly, embryos bearing the Y1226/7 deletion formed a functional facial lymphatic network enabling them to develop normally to adulthood. By contrast, flt4 null larvae displayed hypoplastic facial lymphatics and severe lymphedema. Thus, facial lymphatic vessels appear to be the first functional lymphatic network in the zebrafish, whereas the thoracic duct is initially dispensable for lymphatic function. Moreover, distinct signaling pathways downstream of Flt4 govern lymphatic morphogenesis and differentiation in different anatomical locations.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Genotipo , Hibridación in Situ , Vasos Linfáticos/embriología , Mutación/genética , Fosforilación/genética , Fosforilación/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/genética
12.
BMC Genomics ; 19(1): 169, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29490630

RESUMEN

BACKGROUND: ATAC-seq (Assays for Transposase-Accessible Chromatin using sequencing) is a recently developed technique for genome-wide analysis of chromatin accessibility. Compared to earlier methods for assaying chromatin accessibility, ATAC-seq is faster and easier to perform, does not require cross-linking, has higher signal to noise ratio, and can be performed on small cell numbers. However, to ensure a successful ATAC-seq experiment, step-by-step quality assurance processes, including both wet lab quality control and in silico quality assessment, are essential. While several tools have been developed or adopted for assessing read quality, identifying nucleosome occupancy and accessible regions from ATAC-seq data, none of the tools provide a comprehensive set of functionalities for preprocessing and quality assessment of aligned ATAC-seq datasets. RESULTS: We have developed a Bioconductor package, ATACseqQC, for easily generating various diagnostic plots to help researchers quickly assess the quality of their ATAC-seq data. In addition, this package contains functions to preprocess aligned ATAC-seq data for subsequent peak calling. Here we demonstrate the utilities of our package using 25 publicly available ATAC-seq datasets from four studies. We also provide guidelines on what the diagnostic plots should look like for an ideal ATAC-seq dataset. CONCLUSIONS: This software package has been used successfully for preprocessing and assessing several in-house and public ATAC-seq datasets. Diagnostic plots generated by this package will facilitate the quality assessment of ATAC-seq data, and help researchers to evaluate their own ATAC-seq experiments as well as select high-quality ATAC-seq datasets from public repositories such as GEO to avoid generating hypotheses or drawing conclusions from low-quality ATAC-seq experiments. The software, source code, and documentation are freely available as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/ATACseqQC.html .


Asunto(s)
Biología Computacional/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Sitios de Unión , Elementos Transponibles de ADN , Proteínas de Unión al ADN , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutagénesis Insercional , Sitio de Iniciación de la Transcripción , Transposasas/genética , Transposasas/metabolismo , Navegador Web
13.
Development ; 142(24): 4266-78, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26525671

RESUMEN

Formation and remodeling of vascular beds are complex processes orchestrated by multiple signaling pathways. Although it is well accepted that vessels of a particular organ display specific features that enable them to fulfill distinct functions, the embryonic origins of tissue-specific vessels and the molecular mechanisms regulating their formation are poorly understood. The subintestinal plexus of the zebrafish embryo comprises vessels that vascularize the gut, liver and pancreas and, as such, represents an ideal model in which to investigate the early steps of organ-specific vessel formation. Here, we show that both arterial and venous components of the subintestinal plexus originate from a pool of specialized angioblasts residing in the floor of the posterior cardinal vein (PCV). Using live imaging of zebrafish embryos, in combination with photoconvertable transgenic reporters, we demonstrate that these angioblasts undergo two phases of migration and differentiation. Initially, a subintestinal vein forms and expands ventrally through a Bone Morphogenetic Protein-dependent step of collective migration. Concomitantly, a Vascular Endothelial Growth Factor-dependent shift in the directionality of migration, coupled to the upregulation of arterial markers, is observed, which culminates with the generation of the supraintestinal artery. Together, our results establish the zebrafish subintestinal plexus as an advantageous model for the study of organ-specific vessel development and provide new insights into the molecular mechanisms controlling its formation. More broadly, our findings suggest that PCV-specialized angioblasts contribute not only to the formation of the early trunk vasculature, but also to the establishment of late-forming, tissue-specific vascular beds.


Asunto(s)
Desarrollo Embrionario , Especificidad de Órganos , Venas/citología , Venas/embriología , Pez Cebra/embriología , Animales , Arterias/citología , Movimiento Celular , Sistema Digestivo/irrigación sanguínea , Células Endoteliales/citología , Hígado/irrigación sanguínea , Receptores Notch/metabolismo , Vasos Retinianos/metabolismo
14.
Development ; 142(6): 1050-61, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25758220

RESUMEN

The adult blood system is established by hematopoietic stem cells (HSCs), which arise during development from an endothelial-to-hematopoietic transition of cells comprising the floor of the dorsal aorta. Expression of aortic runx1 has served as an early marker of HSC commitment in the zebrafish embryo, but recent studies have suggested that HSC specification begins during the convergence of posterior lateral plate mesoderm (PLM), well before aorta formation and runx1 transcription. Further understanding of the earliest stages of HSC specification necessitates an earlier marker of hemogenic endothelium. Studies in mice have suggested that GATA2 might function at early stages within hemogenic endothelium. Two orthologs of Gata2 exist in zebrafish: gata2a and gata2b. Here, we report that gata2b expression initiates during the convergence of PLM, becoming restricted to emerging HSCs. We observe Notch-dependent gata2b expression within the hemogenic subcompartment of the dorsal aorta that is in turn required to initiate runx1 expression. Our results indicate that Gata2b functions within hemogenic endothelium from an early stage, whereas Gata2a functions more broadly throughout the vascular system.


Asunto(s)
Tipificación del Cuerpo/fisiología , Factor de Transcripción GATA2/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Hemangioblastos/fisiología , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Aorta/citología , Aorta/embriología , Proteínas Bacterianas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Cartilla de ADN/genética , Citometría de Flujo , Factor de Transcripción GATA2/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ , Proteínas Luminiscentes , Mesodermo/embriología , Oligonucleótidos Antisentido/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Imagen de Lapso de Tiempo , Proteínas de Pez Cebra/metabolismo , Proteína Fluorescente Roja
15.
Development ; 141(7): 1544-52, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24598161

RESUMEN

Differentiation of arteries and veins is essential for the development of a functional circulatory system. In vertebrate embryos, genetic manipulation of Notch signaling has demonstrated the importance of this pathway in driving artery endothelial cell differentiation. However, when and where Notch activation occurs to affect endothelial cell fate is less clear. Using transgenic zebrafish bearing a Notch-responsive reporter, we demonstrate that Notch is activated in endothelial progenitors during vasculogenesis prior to blood vessel morphogenesis and is maintained in arterial endothelial cells throughout larval stages. Furthermore, we find that endothelial progenitors in which Notch is activated are committed to a dorsal aorta fate. Interestingly, some arterial endothelial cells subsequently downregulate Notch signaling and then contribute to veins during vascular remodeling. Lineage analysis, together with perturbation of both Notch receptor and ligand function, further suggests several distinct developmental windows in which Notch signaling acts to promote artery commitment and maintenance. Together, these findings demonstrate that Notch acts in distinct contexts to initiate and maintain artery identity during embryogenesis.


Asunto(s)
Arterias/embriología , Tipificación del Cuerpo/genética , Receptores Notch/fisiología , Animales , Animales Modificados Genéticamente , Arterias/citología , Diferenciación Celular/genética , Embrión no Mamífero , Endotelio Vascular/embriología , Morfogénesis/genética , Neovascularización Fisiológica/genética , Transducción de Señal/fisiología , Venas/embriología , Pez Cebra/embriología , Pez Cebra/genética
16.
Nature ; 474(7350): 220-4, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21654806

RESUMEN

Haematopoietic stem cells (HSCs) are a self-renewing population of cells that continuously replenish all blood and immune cells during the lifetime of an individual. HSCs are used clinically to treat a wide array of diseases, including acute leukaemias and congenital blood disorders, but obtaining suitable numbers of cells and finding immune-compatible donors remain serious problems. These difficulties have led to an interest in the conversion of embryonic stem cells or induced pluripotent stem cells into HSCs, which is not possible using current methodologies. To accomplish this goal, it is critical to understand the native mechanisms involved in the specification of HSCs during embryonic development. Here we demonstrate in zebrafish that Wnt16 controls a novel genetic regulatory network required for HSC specification. Non-canonical signalling by Wnt16 is required for somitic expression of the Notch ligands deltaC (dlc) and deltaD (dld), and these ligands are, in turn, required for the establishment of definitive haematopoiesis. Notch signalling downstream of Dlc and Dld is earlier than, and distinct from, known cell-autonomous requirements for Notch, strongly suggesting that novel Notch-dependent relay signal(s) induce the first HSCs in parallel to other established pathways. Our results demonstrate that somite-specific gene expression is required for the production of haemogenic endothelium.


Asunto(s)
Diferenciación Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Somitos/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Linaje de la Célula , Hematopoyesis , Péptidos y Proteínas de Señalización Intracelular , Ligandos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Somitos/citología , Proteínas Wnt/deficiencia , Proteínas Wnt/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
17.
Genes Dev ; 23(19): 2272-7, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19797767

RESUMEN

The aorta traverses the body, yet little is known about how it is patterned in different anatomical locations. Here, we show that the aorta develops from genetically distinct endothelial cells originating from diverse locations within the embryo. Furthermore, chemokine (C-X-C motif) receptor 4a (cxcr4a) is restricted to endothelial cells derived from anterior mesoderm, and is required specifically for formation of the lateral aortae. Cxcl12b, a cxcr4a ligand, is expressed in endoderm underlying the lateral aortae, and loss of cxcl12b phenocopies cxcr4a deficiency. These studies reveal unexpected endothelial diversity within the aorta that is necessary to facilitate its regional patterning by local cues.


Asunto(s)
Aorta/embriología , Tipificación del Cuerpo/fisiología , Quimiocinas/fisiología , Transducción de Señal , Pez Cebra/embriología , Animales , Células Endoteliales/citología , Regulación del Desarrollo de la Expresión Génica , Receptores CXCR4/deficiencia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
18.
Genome Res ; 23(6): 1008-17, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23478401

RESUMEN

Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) provide powerful platforms for genome editing in plants and animals. Typically, a single nuclease is sufficient to disrupt the function of protein-coding genes through the introduction of microdeletions or insertions that cause frameshifts within an early coding exon. However, interrogating the function of cis-regulatory modules or noncoding RNAs in many instances requires the excision of this element from the genome. In human cell lines and invertebrates, two nucleases targeting the same chromosome can promote the deletion of intervening genomic segments with modest efficiencies. We have examined the feasibility of using this approach to delete chromosomal segments within the zebrafish genome, which would facilitate the functional study of large noncoding sequences in a vertebrate model of development. Herein, we demonstrate that segmental deletions within the zebrafish genome can be generated at multiple loci and are efficiently transmitted through the germline. Using two nucleases, we have successfully generated deletions of up to 69 kb at rates sufficient for germline transmission (1%-15%) and have excised an entire lincRNA gene and enhancer element. Larger deletions (5.5 Mb) can be generated in somatic cells, but at lower frequency (0.7%). Segmental inversions have also been generated, but the efficiency of these events is lower than the corresponding deletions. The ability to efficiently delete genomic segments in a vertebrate developmental system will facilitate the study of functional noncoding elements on an organismic level.


Asunto(s)
Deleción Cromosómica , Inversión Cromosómica , Pez Cebra/genética , Animales , Secuencia de Bases , Sitios de Unión , Puntos de Rotura del Cromosoma , Endonucleasas/metabolismo , Orden Génico , Células Germinativas/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Alineación de Secuencia , Dedos de Zinc
19.
Development ; 140(7): 1497-506, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23462469

RESUMEN

Vascular endothelial growth factor C (Vegfc) is a secreted protein that guides lymphatic development in vertebrate embryos. However, its role during developmental angiogenesis is not well characterized. Here, we identify a mutation in zebrafish vegfc that severely affects lymphatic development and leads to angiogenesis defects on sensitized genetic backgrounds. The um18 mutation prematurely truncated Vegfc, blocking its secretion and paracrine activity but not its ability to activate its receptor Flt4. When expressed in endothelial cells, vegfc(um18) could not rescue lymphatic defects in mutant embryos, but induced ectopic blood vessel branching. Furthermore, vegfc-deficient endothelial cells did not efficiently contribute to tip cell positions in developing sprouts. Computational modeling together with assessment of endothelial cell dynamics by time-lapse analysis suggested that an autocrine Vegfc/Flt4 loop plays an important role in migratory persistence and filopodia stability during sprouting. Our results suggest that Vegfc acts in two distinct modes during development: as a paracrine factor secreted from arteries to guide closely associated lymphatic vasculature and as an autocrine factor to drive migratory persistence during angiogenesis.


Asunto(s)
Vasos Sanguíneos/embriología , Sistema Linfático/embriología , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Alelos , Animales , Animales Modificados Genéticamente , Comunicación Autocrina/genética , Comunicación Autocrina/fisiología , Vasos Sanguíneos/crecimiento & desarrollo , Movimiento Celular/genética , Movimiento Celular/fisiología , Codón sin Sentido/fisiología , Embrión no Mamífero , Femenino , Sistema Linfático/crecimiento & desarrollo , Ratones , Ratones Noqueados , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Comunicación Paracrina/genética , Comunicación Paracrina/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Transducción de Señal/genética , Pez Cebra/embriología , Pez Cebra/genética
20.
Nature ; 464(7292): 1196-200, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20364122

RESUMEN

Within the circulatory system, blood flow regulates vascular remodelling, stimulates blood stem cell formation, and has a role in the pathology of vascular disease. During vertebrate embryogenesis, vascular patterning is initially guided by conserved genetic pathways that act before circulation. Subsequently, endothelial cells must incorporate the mechanosensory stimulus of blood flow with these early signals to shape the embryonic vascular system. However, few details are known about how these signals are integrated during development. To investigate this process, we focused on the aortic arch (AA) blood vessels, which are known to remodel in response to blood flow. By using two-photon imaging of live zebrafish embryos, we observe that flow is essential for angiogenesis during AA development. We further find that angiogenic sprouting of AA vessels requires a flow-induced genetic pathway in which the mechano-sensitive zinc finger transcription factor klf2a induces expression of an endothelial-specific microRNA, mir-126, to activate Vegf signalling. Taken together, our work describes a novel genetic mechanism in which a microRNA facilitates integration of a physiological stimulus with growth factor signalling in endothelial cells to guide angiogenesis.


Asunto(s)
Aorta Torácica/embriología , Hemodinámica , MicroARNs/metabolismo , Neovascularización Fisiológica , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética , Animales , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , MicroARNs/genética , Células 3T3 NIH , Flujo Sanguíneo Regional/fisiología , Pez Cebra/sangre , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA