Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 183: 27-41, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37603971

RESUMEN

Peroxisome proliferator-activated receptor (PPAR) δ is a major transcriptional regulator of cardiac energy metabolism with pleiotropic properties, including anti-inflammatory, anti-oxidative and cardioprotective action. In this study, we sought to investigate whether pharmacological activation of PPARδ via intraperitoneal administration of the selective ligand GW0742 could ameliorate heart failure and mitochondrial dysfunction that have been previously reported in a characterized genetic model of heart failure, the desmin null mice (Des-/-). Our studies demonstrate that treatment of Des-/- mice with the PPARδ agonist attenuated cardiac inflammation, fibrosis and cardiac remodeling. In addition, PPARδ activation alleviated oxidative stress in the failing myocardium as evidenced by decreased ROS levels. Importantly, PPARδ activation stimulated mitochondrial biogenesis, prevented mitochondrial and sarcoplasmic reticulum vacuolar degeneration and improved the mitochondrial intracellular distribution. Finally, PPARδ activation alleviated the mitochondrial respiratory dysfunction, prevented energy depletion and alleviated excessive autophagy and mitophagy in Des-/- hearts. Nevertheless, improvement of all these parameters did not suffice to overcome the significant structural deficiencies that desmin deletion incurs in cardiomyocytes and cardiac function did not improve significantly. In conclusion, pharmacological PPARδ activation in Des-/- hearts exerts protective effects during myocardial degeneration and heart failure by preserving the function and quality of the mitochondrial network. These findings implicate PPARδ agonists as a supplemental constituent of heart failure medications.

2.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38003687

RESUMEN

Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.


Asunto(s)
Insuficiencia Cardíaca , Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio , Isquemia Miocárdica , Masculino , Humanos , Anciano , Precondicionamiento Isquémico Miocárdico/métodos , Corazón , Isquemia , Insuficiencia Cardíaca/terapia
3.
J Mol Cell Cardiol ; 163: 56-66, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34653523

RESUMEN

Krüppel-like factors (KLFs) are DNA-binding transcriptional factors, which regulate various pathways that pertain to development, metabolism and other cellular mechanisms. KLF5 was first cloned in 1993 and by 1999, it was reported as the intestinal-enriched KLF. Beyond findings that have associated KLF5 with normal development and cancer, it has been associated with various types of cardiovascular (CV) complications and regulation of metabolic pathways in the liver, heart, adipose tissue and skeletal muscle. Specifically, increased KLF5 expression has been linked with cardiomyopathy in diabetes, end-stage heart failure, and as well as in vascular atherosclerotic lesions. In this review article, we summarize research findings about transcriptional, post-transcriptional and post-translational regulation of KLF5, as well as the role of KLF5 in the biology of cells and organs that affect cardiovascular health either directly or indirectly. Finally, we propose KLF5 inhibition as an emerging approach for cardiovascular therapeutics.


Asunto(s)
Cardiomiopatías , Sistema Cardiovascular , Sistema Cardiovascular/metabolismo , Corazón , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción/metabolismo
4.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35897690

RESUMEN

Cardiac disease is a broad cluster of several diseases, which include coronary artery disease, valve disease, congenital heart disease, arrhythmia, and cardiomyopathy [...].


Asunto(s)
Cardiomiopatías , Enfermedad de la Arteria Coronaria , Cardiopatías Congénitas , Arritmias Cardíacas , Humanos , Mitocondrias
5.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203800

RESUMEN

Accumulating evidence support the cardioprotective properties of the nuclear receptor peroxisome proliferator activated receptor ß/δ (PPARß/δ); however, the underlying mechanisms are not yet fully elucidated. The aim of the study was to further investigate the mechanisms underlying PPARß/δ-mediated cardioprotection in the setting of myocardial ischemia/reperfusion (I/R). For this purpose, rats were treated with PPARß/δ agonist GW0742 and/or antagonist GSK0660 in vivo and hearts were subjected to ex vivo global ischemia followed by reperfusion. PPARß/δ activation improved left ventricular developed pressure recovery, reduced infarct size (IS) and incidence of reperfusion-induced ventricular arrhythmias while it also up-regulated superoxide dismutase 2, catalase and uncoupling protein 3 resulting in attenuation of oxidative stress as evidenced by the reduction in 4-hydroxy-2-nonenal protein adducts and protein carbonyl formation. PPARß/δ activation also increased both mRNA expression and enzymatic activity of aldehyde dehydrogenase 2 (ALDH2); inhibition of ALDH2 abrogated the IS limiting effect of PPARß/δ activation. Furthermore, upregulation of PGC-1α and isocitrate dehydrogenase 2 mRNA expression, increased citrate synthase activity as well as mitochondrial ATP content indicated improvement in mitochondrial content and energy production. These data provide new mechanistic insight into the cardioprotective properties of PPARß/δ in I/R pointing to ALDH2 as a direct downstream target and suggesting that PPARß/δ activation alleviates myocardial I/R injury through coordinated stimulation of the antioxidant defense of the heart and preservation of mitochondrial function.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial/metabolismo , Cardiotónicos/uso terapéutico , Metabolismo Energético , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Estrés Oxidativo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Proteína 4 Similar a la Angiopoyetina/metabolismo , Animales , Antioxidantes/metabolismo , Cadherinas/metabolismo , Cardiotónicos/administración & dosificación , Cardiotónicos/farmacología , Catalasa/metabolismo , Metabolismo Energético/efectos de los fármacos , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Modelos Biológicos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , PPAR delta/agonistas , PPAR-beta/agonistas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Tiazoles/administración & dosificación , Tiazoles/farmacología , Tiazoles/uso terapéutico , Proteína Desacopladora 3/metabolismo , Regulación hacia Arriba/efectos de los fármacos
6.
J Cell Mol Med ; 24(7): 3795-3806, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32155321

RESUMEN

Acute myocardial infarction causes lethal injury to cardiomyocytes during both ischaemia and reperfusion (IR). It is important to define the precise mechanisms by which they die in order to develop strategies to protect the heart from IR injury. Necrosis is known to play a major role in myocardial IR injury. There is also evidence for significant myocardial death by other pathways such as apoptosis, although this has been challenged. Mitochondria play a central role in both of these pathways of cell death, as either a causal mechanism is the case of mitochondrial permeability transition leading to necrosis, or as part of the signalling pathway in mitochondrial cytochrome c release and apoptosis. Autophagy may impact this process by removing dysfunctional proteins or even entire mitochondria through a process called mitophagy. More recently, roles for other programmed mechanisms of cell death such as necroptosis and pyroptosis have been described, and inhibitors of these pathways have been shown to be cardioprotective. In this review, we discuss both mitochondrial and mitochondrial-independent pathways of the major modes of cell death, their role in IR injury and their potential to be targeted as part of a cardioprotective strategy. This article is part of a special Issue entitled 'Mitochondria as targets of acute cardioprotection' and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.


Asunto(s)
Mitocondrias/genética , Infarto del Miocardio/genética , Daño por Reperfusión Miocárdica/genética , Miocardio/metabolismo , Apoptosis/genética , Autofagia/genética , Muerte Celular/genética , Humanos , Mitocondrias/patología , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Necrosis/genética , Necrosis/patología , Transducción de Señal/genética
7.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114290

RESUMEN

Iron is an essential mineral participating in different functions of the organism under physiological conditions. Numerous biological processes, such as oxygen and lipid metabolism, protein production, cellular respiration, and DNA synthesis, require the presence of iron, and mitochondria play an important role in the processes of iron metabolism. In addition to its physiological role, iron may be also involved in the adaptive processes of myocardial "conditioning". On the other hand, disorders of iron metabolism are involved in the pathological mechanisms of the most common human diseases and include a wide range of them, such as type 2 diabetes, obesity, and non-alcoholic fatty liver disease, and accelerate the development of atherosclerosis. Furthermore, iron also exerts potentially deleterious effects that may be manifested under conditions of ischemia/reperfusion (I/R) injury, myocardial infarction, heart failure, coronary artery angioplasty, or heart transplantation, due to its involvement in reactive oxygen species (ROS) production. Moreover, iron has been recently described to participate in the mechanisms of iron-dependent cell death defined as "ferroptosis". Ferroptosis is a form of regulated cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been shown to be associated with I/R injury and several other cardiac diseases as a significant form of cell death in cardiomyocytes. In this review, we will discuss the role of iron in cardiovascular diseases, especially in myocardial I/R injury, and protective mechanisms stimulated by different forms of "conditioning" with a special emphasis on the novel targets for cardioprotection.


Asunto(s)
Hierro/metabolismo , Enfermedades Metabólicas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Animales , Ferroptosis , Homeostasis , Humanos , Enfermedades Metabólicas/complicaciones , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/etiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
8.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326182

RESUMEN

Metabolic syndrome, diabetes, and ischemic heart disease are among the leading causes of death and disability in Western countries. Diabetic cardiomyopathy is responsible for the most severe signs and symptoms. An important strategy for reducing the incidence of cardiovascular disease is regular exercise. Remote ischemic conditioning has some similarity with exercise and can be induced by short periods of ischemia and reperfusion of a limb, and it can be performed in people who cannot exercise. There is abundant evidence that exercise is beneficial in diabetes and ischemic heart disease, but there is a need to elucidate the specific cardiovascular effects of emerging and unconventional forms of exercise in people with diabetes. In addition, remote ischemic conditioning may be considered among the options to induce beneficial effects in these patients. The characteristics and interactions of diabetes and ischemic heart disease, and the known effects of exercise and remote ischemic conditioning in the presence of metabolic syndrome and diabetes, are analyzed in this brief review.


Asunto(s)
Cardiomiopatías Diabéticas/epidemiología , Ejercicio Físico , Precondicionamiento Isquémico , Isquemia Miocárdica/epidemiología , Animales , Diabetes Mellitus/epidemiología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/prevención & control , Cardiomiopatías Diabéticas/terapia , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Redes y Vías Metabólicas , Isquemia Miocárdica/etiología , Isquemia Miocárdica/prevención & control , Isquemia Miocárdica/terapia , Daño por Reperfusión Miocárdica/epidemiología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/terapia
9.
Can J Physiol Pharmacol ; 95(10): 1190-1203, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28750189

RESUMEN

Irradiation of normal tissues leads to acute increase in reactive oxygen/nitrogen species that serve as intra- and inter-cellular signaling to alter cell and tissue function. In the case of chest irradiation, it can affect the heart, blood vessels, and lungs, with consequent tissue remodelation and adverse side effects and symptoms. This complex process is orchestrated by a large number of interacting molecular signals, including cytokines, chemokines, and growth factors. Inflammation, endothelial cell dysfunction, thrombogenesis, organ dysfunction, and ultimate failing of the heart occur as a pathological entity - "radiation-induced heart disease" (RIHD) that is major source of morbidity and mortality. The purpose of this review is to bring insights into the basic mechanisms of RIHD that may lead to the identification of targets for intervention in the radiotherapy side effect. Studies of authors also provide knowledge about how to select targeted drugs or biological molecules to modify the progression of radiation damage in the heart. New prospective studies are needed to validate that assessed factors and changes are useful as early markers of cardiac damage.


Asunto(s)
Vasos Coronarios/efectos de la radiación , Cardiopatías/etiología , Mediadores de Inflamación/metabolismo , Miocitos Cardíacos/efectos de la radiación , Traumatismos por Radiación/etiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/efectos de la radiación , Biomarcadores/metabolismo , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Daño del ADN , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/efectos de la radiación , Cardiopatías/metabolismo , Cardiopatías/patología , Humanos , Peroxidación de Lípido/efectos de la radiación , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de la radiación , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Transducción de Señal/efectos de la radiación
10.
Can J Physiol Pharmacol ; 95(10): 1204-1212, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28683229

RESUMEN

Currently, there are no satisfactory interventions to protect the heart against the detrimental effects of ischemia-reperfusion injury. Although ischemic preconditioning (PC) is the most powerful form of intrinsic cardioprotection, its application in humans is limited to planned interventions, due to its short duration and technical requirements. However, many organs/tissues are capable of producing "remote" PC (RPC) when subjected to brief bouts of ischemia-reperfusion. RPC was first described in the heart where brief ischemia in one territory led to protection in other area. Later on, RPC started to be used in patients with acute myocardial infarction, albeit with ambiguous results. It is hypothesized that the connection between the signal triggered in remote organ and protection induced in the heart can be mediated by humoral and neural pathways, as well as via systemic response to short sublethal ischemia. However, although RPC has a potentially important clinical role, our understanding of the mechanistic pathways linking the local stimulus to the remote organ remains incomplete. Nevertheless, RPC appears as a cost-effective and easily performed intervention. Elucidation of protective mechanisms activated in the remote organ may have therapeutic and diagnostic implications in the management of myocardial ischemia and lead to development of pharmacological RPC mimetics.


Asunto(s)
Precondicionamiento Isquémico Miocárdico/métodos , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Animales , Modelos Animales de Enfermedad , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Flujo Sanguíneo Regional , Transducción de Señal , Factores de Tiempo , Resultado del Tratamiento
11.
Cell Mol Neurobiol ; 36(5): 701-12, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26239244

RESUMEN

Hypoxia is the lack of sufficient oxygenation of tissue, imposing severe stress upon cells. It is a major feature of many pathological conditions such as stroke, traumatic brain injury, cerebral hemorrhage, perinatal asphyxia and can lead to cell death due to energy depletion and increased free radical generation. The present study investigates the effect of hypoxia on the unfolded protein response of the cell (UPR), utilizing a 16-h oxygen-glucose deprivation protocol (OGD) in a PC12 cell line model. Expression of glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94), key players of the UPR, was studied along with the expression of glucose-regulated protein 75 (GRP75), heat shock cognate 70 (HSC70), and glyceraldehyde 3-phosphate dehydrogenase, all with respect to the cell death mechanism(s). Cells subjected to OGD displayed upregulation of GRP78 and GRP94 and concurrent downregulation of GRP75. These findings were accompanied with minimal apoptotic cell death and induction of autophagy. The above observation warrants further investigation to elucidate whether autophagy acts as a pro-survival mechanism that upon severe and prolonged hypoxia acts as a concerted cell response leading to cell death. In our OGD model, hypoxia modulates UPR and induces autophagy.


Asunto(s)
Autofagia/fisiología , Glucosa/metabolismo , Oxígeno/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Apoptosis/efectos de los fármacos , Hipoxia de la Célula , Supervivencia Celular , Chaperón BiP del Retículo Endoplásmico , Neuronas/metabolismo , Células PC12 , Ratas
12.
Cell Physiol Biochem ; 37(5): 1750-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26584276

RESUMEN

BACKGROUND/AIMS: Increasing amounts of the neurotransmitter glutamate are associated with excitotoxicity, a phenomenon related both to homeostatic processes and neurodegenerative diseases such as multiple sclerosis. METHODS: PC12 cells (rat pheochromocytoma) were treated with various concentrations of the non-essential amino acid glutamate for 0.5-24 hours. The effect of glutamate on cell morphology was monitored with electron microscopy and haematoxylin-eosin staining. Cell survival was calculated with the MTT assay. Expression analysis of chaperones associated with the observed phenotype was performed using either Western Blotting at the protein level or qRT-PCR at the mRNA level. RESULTS: Administration of glutamate in PC12 cells in doses as low as 10 µM causes an up-regulation of GRP78, GRP94 and HSC70 protein levels, while their mRNA levels show the opposite kinetics. At the same time, GAPDH and GRP75 show reduced protein levels, irrespective of their transcriptional rate. On a cellular level, low concentrations of glutamate induce an autophagy-mediated pro-survival phenotype, which is further supported by induction of the autophagic marker LC3. CONCLUSION: The findings in the present study underline a discrete effect of glutamate on neuronal cell fate depending on its concentration. It was also shown that a low dose of glutamate orchestrates a unique expression signature of various chaperones and induces cell autophagy, which acts in a neuroprotective fashion.


Asunto(s)
Autofagia/efectos de los fármacos , Ácido Glutámico/farmacología , Chaperonas Moleculares/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Proteínas del Choque Térmico HSC70/genética , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microscopía Electrónica , Chaperonas Moleculares/genética , Células PC12 , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación hacia Arriba/efectos de los fármacos
13.
Pharmacol Res ; 95-96: 102-10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25828396

RESUMEN

Heart failure still remains one of the leading causes of morbidity and mortality worldwide. A major contributing factor is reactive oxygen/nitrogen species (RONS) overproduction which is associated with cardiac remodeling partly through cardiomyocyte apoptosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear receptor superfamily and have been implicated in cardioprotection. However, the molecular mechanisms are largely unexplored. In this study we sought to investigate the potential beneficial effects evoked by activation of PPARß/δ under the setting of oxidative stress induced by H2O2 in adult rat cardiac myocytes. The selective PPARß/δ agonist GW0742 inhibited the H2O2-induced apoptosis and increased cell viability. In addition, generation of RONS was attenuated in cardiac myocytes in the presence of PPARß/δ agonist. These effects were abolished in the presence of the PPARß/δ antagonist indicating that the effect was through PPARß/δ receptor activation. Treatment with PPARß/δ agonist was also associated with attenuation of caspase-3 and PARP cleavage, upregulation of anti-apoptotic Bcl-2 and concomitant downregulation of pro-apoptotic Bax. In addition, activation of PPARß/δ inhibited the oxidative-stress-induced MMP-2 and MMP-9 mRNA upregulation. It is concluded that PPARß/δ activation exerts a cytoprotective effect in adult rat cardiac myocytes subjected to oxidative stress via inhibition of oxidative stress, MMP expression, and apoptosis. Our data suggest that the novel connection between PPAR signaling and MMP down-regulation in cardiac myocytes might represent a new target for the management of oxidative stress-induced cardiac dysfunction.


Asunto(s)
Apoptosis/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , PPAR delta/agonistas , PPAR-beta/agonistas , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Peróxido de Hidrógeno/farmacología , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , PPAR delta/antagonistas & inhibidores , PPAR-beta/antagonistas & inhibidores , Ratas Wistar , Sulfonas/farmacología , Tiazoles/farmacología , Tiofenos/farmacología
14.
Can J Physiol Pharmacol ; 93(7): 495-503, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25965412

RESUMEN

Although pleiotropy, which is defined as multiple effects derived from a single gene, was recognized many years ago, and considerable progress has since been achieved in this field, it is not very clear how much this feature of a drug is clinically relevant. During the last decade, beneficial pleiotropic effects from hypolipidemic drugs (as in, effects that are different from the primary ones) have been associated with reduction of cardiovascular risk. As with statins, the agonists of peroxisome proliferator-activated receptors (PPARs), niacin and fibrates, have been suggested to exhibit pleiotropic activity that could significantly modify the outcome of a cardiovascular ailment. This review examines findings demonstrating the impacts of treatment with hypolipidemic drugs on cardiac response to ischemia in a setting of acute ischemia-reperfusion, in relation to PPAR activation. Specifically, it addresses the issue of susceptibility to ischemia, with particular regard to the preconditioning-like cardioprotection conferred by hypolipidemic drugs, as well as the potential molecular mechanisms behind this cardioprotection. Finally, the involvement of PPAR activation in the mechanisms of non-metabolic cardioprotective effects from hypolipidemic drugs, and their effects on normal and pathologically altered myocardium (in the hearts of hypertensive rats) is also discussed.


Asunto(s)
Cardiotónicos/farmacología , Hipertensión/tratamiento farmacológico , Hipolipemiantes/farmacología , Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/prevención & control , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Animales , Cardiotónicos/administración & dosificación , Cardiotónicos/uso terapéutico , Modelos Animales de Enfermedad , Hipertensión/complicaciones , Hipertensión/metabolismo , Hipolipemiantes/administración & dosificación , Hipolipemiantes/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Ratas
15.
Mol Cell Biochem ; 395(1-2): 145-54, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24939361

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily and appear to have beneficial effects in the cardiovascular system. PPARß/δ has been shown previously to exert an inhibitory effect on cardiac myocyte hypertrophy in vivo and in vitro although the exact mechanism is not fully clear yet. The principal signaling pathways that have been involved in triggering cardiac hypertrophic response are mitogen-activated protein kinases (MAPKs) and PI3K/Akt cascades. In this study, we sought to evaluate the potential effects evoked by PPARß/δ activation on signaling pathways that are implicated in cardiac myocyte growth responses. The selective PPARß/δ agonist GW0742 attenuated ERK1/2 and Akt phosphorylation that was stimulated by growth promoting agonists (phenylephrine, insulin or IGF-1). This effect was not reversed by the specific PPARß/δ antagonist, GSK0660, but was inhibited by vanadate, a potent protein tyrosine phosphatase inhibitor. In addition, GW0742 prevented the oxidation and inactivation of PTEN supporting further the notion that its inhibitory action on the agonist-induced kinase phosphorylation is mediated by the modulation of phosphatase activity. Furthermore, GW0742 abolished the agonist-induced intracellular generation of reactive oxygen species, independently of PPARß/δ activation. Our data reveals a new non-genomic mechanism of GW0742, which ameliorates the generation of reactive oxygen species and attenuates ERK1/2 and PI3K/Akt signaling, with implications in the regulation of cardiac hypertrophic response.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Miocitos Cardíacos/citología , Receptores Activados del Proliferador del Peroxisoma/agonistas , Sulfonas/farmacología , Tiazoles/farmacología , Tiofenos/farmacología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Miocitos Cardíacos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Vanadatos/farmacología
16.
Mol Cell Biochem ; 388(1-2): 195-201, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24276754

RESUMEN

According to a compelling body of evidence anesthetic preconditioning (APC) attenuates the deleterious consequences of ischemia-reperfusion and protects the heart through a mechanism similar to ischemic preconditioning. The present study was purported to investigate the intracellular signaling pathways activated in human myocardium in response to a preconditioning protocol with two different volatile anesthetics, namely isoflurane and sevoflurane. To this aim, phosphorylation of PKCα and -δ, ERK1/2, Akt, and GSK3ß was determined at the end of the APC protocol, in human atrial samples harvested from patients undergoing open-heart surgery. The results demonstrate that preconditioning with volatile anesthetics triggers the activation of PKCδ and -α isoforms and of prosurvival kinases, ERK1/2, and Akt, while inhibiting their downstream target GSK3ß during the memory phase.


Asunto(s)
Anestésicos Generales/farmacología , Corazón/efectos de los fármacos , Precondicionamiento Isquémico Miocárdico/métodos , Isquemia Miocárdica/prevención & control , Anciano , Anestésicos Generales/administración & dosificación , Anestésicos por Inhalación/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Isoflurano/farmacología , Masculino , Éteres Metílicos/farmacología , Persona de Mediana Edad , Fosforilación , Proyectos Piloto , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sevoflurano , Transducción de Señal/efectos de los fármacos , Cirugía Torácica
17.
Antioxidants (Basel) ; 13(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38671853

RESUMEN

Myocardial ischemia/reperfusion injury (I/R) and the resulting heart failure is one of the main causes of mortality and morbidity worldwide. Camphene has been shown to have anti-inflammatory and hypolipidemic properties; however, its role in the protection of the heart from ischemia and reperfusion has not been investigated. The cardioprotective role of camphene and the mechanism that mediates its action against I/R injury was evaluated in the present study. A single dose of camphene was administered in adult rats prior to ex vivo I/R induction. Infarct size was measured using 2,3,5-triphenyltetrazolium chloride (TTC) staining and cardiomyocyte injury was assessed by determining the release of the enzyme lactate dehydrogenase (LDH). Camphene pretreatment provided significant protection reducing myocardial infarct size and cell death after I/R. The effect was correlated with the reduction in oxidative stress as evidenced by the determination of protein carbonylation, GSH/GSSG ratio, the increase in mitochondrial content as determined by CS activity, and the modulation of antioxidant defense mechanisms (expression of Nrf2 and target genes and activities of CAT, MnSOD, and GR). Furthermore, ferroptosis was decreased, as demonstrated by downregulation of GPx4 expression and reduction in lipid peroxidation. The results suggest that camphene can protect the heart against I/R injury by maintaining redox homeostasis and can hold therapeutic potential for mitigating the detrimental effects of I/R in the heart.

18.
Can J Physiol Pharmacol ; 91(8): 608-16, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23889688

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors regulating cardiac lipid metabolism and energy homeostasis. Although the activation of PPARs has been implicated in cardioprotection, the molecular mechanisms are largely unexplored. In this study, we aimed to investigate the effect of the PPAR-α agonist WY-14643 (WY), mimicking a delayed effect of preconditioning in rat hearts exposed to acute ischaemia-reperfusion (I/R) 24 h later, and to define whether antioxidative and antiapoptotic mechanisms are involved. Treatment with WY markedly attenuated post-ischaemic contractile dysfunction (as evidenced by the reduced infarct size), the higher left ventricular developed pressure (LVDP) recovery, and the decreased occurrence of arrhythmias. These effects were abolished in the presence of the PPAR-α antagonist MK886. Heme oxygenase-1, a key antioxidative enzyme implicated in cytoprotection, was upregulated in response to WY at baseline, but was markedly reduced after I/R, indicating reduced oxidative stress. WY treatment was also associated with decreased mRNA levels and enzymatic activity of matrix metalloproteinase-2, and increased ratios of Bcl-2:Bax proteins. These results indicate that PPAR-α activation by its selective ligand WY may confer delayed preconditioning-like protection in rat hearts subjected to I/R by modulating oxidative stress, activation of matrix metalloproteinase-2, and expression of Bcl-2 and Bax.


Asunto(s)
Metaloproteinasa 2 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Daño por Reperfusión Miocárdica , PPAR alfa/agonistas , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Pirimidinas/farmacología , Animales , Pruebas de Función Cardíaca , Técnicas In Vitro , Masculino , Contracción Miocárdica/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Miocardio/patología , Ratas , Ratas Wistar , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos
19.
Open Res Eur ; 3: 55, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38689633

RESUMEN

Soft skills are the elementary management, personal, and interpersonal abilities that are vital for an individual to be efficient at workplace or in their personal life. Each work place requires different set of soft skills. Thus, in addition to scientific/technical skills that are easier to access within a short time frame, several key soft skills are essential for the success of a researcher in today's international work environment. In this paper, the trainees and trainers of the EU-CardioRNA COST Action CA17129 training school on soft skills present basic and advanced soft skills for early career researchers. Here, we particularly emphasize on the importance of transferable and presentation skills, ethics, literature reading and reviewing, research protocol and grant writing, networking, and career opportunities for researchers. All these skills are vital but are often overlooked by some scholars. We also provide tips to ace in aforementioned skills that are crucial in a day-to-day life of early and late career researchers in academia and industry.

20.
Can J Physiol Pharmacol ; 90(8): 1135-44, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22809038

RESUMEN

Peroxisome proliferator-activated receptors (PPAR) regulate the expression of genes involved in lipid metabolism, energy production, and inflammation. Their role in ischaemia-reperfusion (I/R) is less clear, although research indicates involvement of PPARs in some forms of preconditioning. This study aimed to explore the effects of PPAR-α activation on the I/R injury and potential cardioprotective downstream mechanisms involved. Langendorff-perfused hearts of rats pretreated with the selective PPAR-α agonist WY-14643 (WY, pirinixic acid; 3 mg·(kg body mass)·day(-1); 5 days) were subjected to 30 min ischaemia - 2 h reperfusion with or without the phosphatidylinositol 3-kinase (PI3K)-Akt inhibitor wortmannin for the evaluation of functional (left ventricular developed pressure, LVDP) recovery, infarct size (IS), and reperfusion-induced arrhythmias. A 2-fold increase in baseline PPAR-α mRNA levels (qPCR) in the WY-treated group and higher post-I/R PPAR-α levels compared with those in untreated controls were accompanied by similar changes in the expression of PPAR-α target genes PDK4 and mCPT-1, regulating glucose and fatty acid metabolism, and by enhanced Akt phosphorylation. Post-ischaemic LVDP restoration in WY-treated hearts reached 60% ± 9% of the pre-ischaemic values compared with 24% ± 3% in the control hearts (P < 0.05), coupled with reduced IS and incidence of ventricular fibrillation that was blunted by wortmannin. Results indicate that PPAR-α up-regulation may confer preconditioning-like protection via metabolic effects. Downstream mechanisms of PPAR-α-mediated cardioprotection may involve PI3K-Akt activation.


Asunto(s)
Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/fisiopatología , PPAR alfa/fisiología , Fosfatidilinositol 3-Quinasa/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Androstadienos/farmacología , Animales , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/prevención & control , Quimasas/biosíntesis , Modelos Animales de Enfermedad , Masculino , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/metabolismo , PPAR alfa/biosíntesis , Proliferadores de Peroxisomas/antagonistas & inhibidores , Proliferadores de Peroxisomas/farmacología , Proliferadores de Peroxisomas/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/biosíntesis , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/antagonistas & inhibidores , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Wortmanina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA