Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(14): e2116708119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35357971

RESUMEN

Iron surface determinant B (IsdB) is a hemoglobin (Hb) receptor essential for hemic iron acquisition by Staphylococcus aureus. Heme transfer to IsdB is possible from oxidized Hb (metHb), but inefficient from Hb either bound to oxygen (oxyHb) or bound to carbon monoxide (HbCO), and encompasses a sequence of structural events that are currently poorly understood. By single-particle cryo-electron microscopy, we determined the structure of two IsdB:Hb complexes, representing key species along the heme extraction pathway. The IsdB:HbCO structure, at 2.9-Å resolution, provides a snapshot of the preextraction complex. In this early stage of IsdB:Hb interaction, the hemophore binds to the ß-subunits of the Hb tetramer, exploiting a folding-upon-binding mechanism that is likely triggered by a cis/trans isomerization of Pro173. Binding of IsdB to α-subunits occurs upon dissociation of the Hb tetramer into α/ß dimers. The structure of the IsdB:metHb complex reveals the final step of the extraction process, where heme transfer to IsdB is completed. The stability of the complex, both before and after heme transfer from Hb to IsdB, is influenced by isomerization of Pro173. These results greatly enhance current understanding of structural and dynamic aspects of the heme extraction mechanism by IsdB and provide insight into the interactions that stabilize the complex before the heme transfer event. This information will support future efforts to identify inhibitors of heme acquisition by S. aureus by interfering with IsdB:Hb complex formation.


Asunto(s)
Proteínas de Transporte de Catión , Hemo , Hemoglobinas , Proteínas de Transporte de Catión/química , Microscopía por Crioelectrón , Hemo/química , Hemoglobinas/química , Humanos , Hierro/metabolismo
2.
Bioorg Chem ; 144: 107164, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38306824

RESUMEN

Cancer spreading through metastatic processes is one of the major causes of tumour-related mortality. Metastasis is a complex phenomenon which involves multiple pathways ranging from cell metabolic alterations to changes in the biophysical phenotype of cells and tissues. In the search for new effective anti-metastatic agents, we modulated the chemical structure of the lead compound AA6, in order to find the structural determinants of activity, and to identify the cellular target responsible of the downstream anti-metastatic effects observed. New compounds synthesized were able to inhibit in vitro B16-F10 melanoma cell invasiveness, and one selected compound, CM365, showed in vivo anti-metastatic effects in a lung metastasis mouse model of melanoma. Septin-4 was identified as the most likely molecular target responsible for these effects. This study showed that CM365 is a promising molecule for metastasis prevention, remarkably effective alone or co-administered with drugs normally used in cancer therapy, such as paclitaxel.


Asunto(s)
Neoplasias Pulmonares , Melanoma Experimental , Animales , Ratones , Septinas , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Neoplasias Pulmonares/tratamiento farmacológico , Paclitaxel , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
3.
Biol Chem ; 404(6): 601-606, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36867068

RESUMEN

Organic nitrates are widely used, but their chronic efficacy is blunted due to the development of tolerance. The properties of new tolerance free organic nitrates were studied. Their lipophilicity profile and passive diffusion across polydimethylsiloxane membrane and pig ear-skin, and their efficacy in tissue regeneration using HaCaT keratinocytes were evaluated. The permeation results show that these nitrates have a suitable profile for NO topical administration on the skin. Furthermore, the derivatives with higher NO release exerted a pro-healing effect on HaCaT cells. This new class of organic nitrates might be a promising strategy for the chronic treatment of skin pathologies.


Asunto(s)
Nitratos , Enfermedades de la Piel , Animales , Tolerancia a Medicamentos , Nitratos/farmacología , Nitratos/uso terapéutico , Piel , Enfermedades de la Piel/tratamiento farmacológico , Porcinos , Cicatrización de Heridas , Células HaCaT , Humanos
4.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37511019

RESUMEN

The application of gaseous signaling molecules like NO, H2S or CO to overcome the multidrug resistance in cancer treatment has proven to be a viable therapeutic strategy. The development of CO-releasing molecules (CORMs) in a controlled manner and in targeted tissues remains a challenge in medicinal chemistry. In this paper, we describe the design, synthesis and chemical and enzymatic stability of a novel non-metal CORM (1) able to release intracellularly CO and, simultaneously, facilitate fluorescent degradation of products under the action of esterase. The toxicity of 1 against different human cancer cell lines and their drug-resistant counterparts, as well as the putative mechanism of toxicity were investigated. The drug-resistant cancer cell lines efficiently absorbed 1 and 1 was able to restore their sensitivity vs. chemotherapeutic drugs by causing a CO-dependent mitochondrial oxidative stress that culminated in mitochondrial-dependent apoptosis. These results demonstrate the importance of CORMs in cases where conventional chemotherapy fails and thus open the horizons towards new combinatorial strategies to overcome multidrug resistance.


Asunto(s)
Monóxido de Carbono , Compuestos Organometálicos , Humanos , Monóxido de Carbono/farmacología , Monóxido de Carbono/química , Carbón Orgánico , Mitocondrias/metabolismo , Apoptosis , Transducción de Señal , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/química
5.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570694

RESUMEN

Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.


Asunto(s)
Donantes de Óxido Nítrico , Óxido Nítrico , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliales/metabolismo , Músculo Liso Vascular , Proteómica , Proliferación Celular , Células Cultivadas , Miocitos del Músculo Liso
6.
Molecules ; 27(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35408735

RESUMEN

Nitric oxide is a ubiquitous signaling radical that influences critical body functions. Its importance in the cardiovascular system and the innate immune response to bacterial and viral infections has been extensively investigated. The overproduction of NO is an early component of viral infections, including those affecting the respiratory tract. The production of high levels of NO is due to the overexpression of NO biosynthesis by inducible NO synthase (iNOS), which is involved in viral clearance. The development of NO-based antiviral therapies, particularly gaseous NO inhalation and NO-donors, has proven to be an excellent antiviral therapeutic strategy. The aim of this review is to systematically examine the multiple research studies that have been carried out to elucidate the role of NO in viral infections and to comprehensively describe the NO-based antiviral strategies that have been developed thus far. Particular attention has been paid to the potential mechanisms of NO and its clinical use in the prevention and therapy of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Virosis , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Inmunidad Innata , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II/metabolismo , Virosis/tratamiento farmacológico
7.
Bioorg Chem ; 111: 104911, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33901795

RESUMEN

We herein report a study on a set of hybrid compounds in which 3-R-substituted furoxan moieties (R = CH3, CONH2, CN, SO2C6H5), endowed with varying NO-releasing capacities, are joined to a mitochondrial probe, rhodamine B. Each product has been investigated for its ability to release NO both in physiological solution, in the presence of cysteine, and in A549 lung adenocarcinoma cancer cells. The cytotoxicity of all the products against the aforementioned cancer cells has been assessed, including the structurally related compounds with no mitochondrial targeting, which were taken as a reference. In the case of the models bearing the -CH3 and -CONH2 groups at the 3-position on the furoxan, only the targeted models showed a significant cytotoxic activity, and only at the highest concentrations, in accordance with their weak NO-releasing properties. On the contrary, the presence of the strong electron-withdrawing groups, as -CN and -SO2C6H5, at the 3-position gave rise to anticancer agents, likely because of the high NO-releasing and of their capability of inhibiting cellular proteins by covalent binding. In detail, the rhodamine hybrid containing the 3-SO2C6H5 substituted furoxan moiety emerged as the most interesting product as it showed high cytotoxicity over the entire concentration range tested. This substructure was also linked to a phenothiazine scaffold that is able to accumulate in lysosomes. Nevertheless, mitochondrial targeting for these NO-donor furoxan substructures was found to be the most efficient.


Asunto(s)
Antineoplásicos/farmacología , Óxido Nítrico/metabolismo , Orgánulos/química , Oxadiazoles/farmacología , Células A549 , Antineoplásicos/química , Antineoplásicos/metabolismo , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Orgánulos/metabolismo , Oxadiazoles/química , Oxadiazoles/metabolismo , Relación Estructura-Actividad
8.
Drug Resist Updat ; 50: 100682, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32087558

RESUMEN

Multidrug resistance (MDR) is the dominant cause of the failure of cancer chemotherapy. The design of antitumor drugs that are able to evade MDR is rapidly evolving, showing that this area of biomedical research attracts great interest in the scientific community. The current review explores promising recent approaches that have been developed with the aim of circumventing or overcoming MDR. Encouraging results have been obtained in the investigation of the MDR-modulating properties of various classes of natural compounds and their analogues. Inhibition of P-gp or downregulation of its expression have proven to be the main mechanisms by which MDR can be surmounted. The use of hybrid molecules that are able to simultaneously interact with two or more cancer cell targets is currently being explored as a means to circumvent drug resistance. This strategy is based on the design of hybrid compounds that are obtained either by merging the structural features of separate drugs, or by conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The approach is highly promising due to the pharmacokinetic and pharmacodynamic advantages that can be achieved over the independent administration of the two individual components. However, it should be stressed that the task of obtaining successful multivalent drugs is a very challenging one. The conjugation of anticancer agents with nitric oxide (NO) donors has recently been developed, creating a particular class of hybrid that can combat tumor drug resistance. Appropriate NO donors have been shown to reverse drug resistance via nitration of ABC transporters and by interfering with a number of metabolic enzymes and signaling pathways. In fact, hybrid compounds that are produced by covalently attaching NO-donors and antitumor drugs have been shown to elicit a synergistic cytotoxic effect in a variety of drug resistant cancer cell lines. Another strategy to circumvent MDR is based on nanocarrier-mediated transport and the controlled release of chemotherapeutic drugs and P-gp inhibitors. Their pharmacokinetics are governed by the nanoparticle or polymer carrier and make use of the enhanced permeation and retention (EPR) effect, which can increase selective delivery to cancer cells. These systems are usually internalized by cancer cells via endocytosis and accumulate in endosomes and lysosomes, thus preventing rapid efflux. Other modalities to combat MDR are described in this review, including the pharmaco-modulation of acridine, which is a well-known scaffold in the development of bioactive compounds, the use of natural compounds as means to reverse MDR, and the conjugation of anticancer drugs with carriers that target specific tumor-cell components. Finally, the outstanding potential of in silico structure-based methods as a means to evaluate the ability of antitumor drugs to interact with drug transporters is also highlighted in this review. Structure-based design methods, which utilize 3D structural data of proteins and their complexes with ligands, are the most effective of the in silico methods available, as they provide a prediction regarding the interaction between transport proteins and their substrates and inhibitors. The recently resolved X-ray structure of human P-gp can help predict the interaction sites of designed compounds, providing insight into their binding mode and directing possible rational modifications to prevent them from becoming P-gp drug substrates. In summary, although major efforts were invested in the search for new tools to combat drug resistant tumors, they all require further implementation and methodological development. Further investigation and progress in the abovementioned strategies will provide significant advances in the rational combat against cancer MDR.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Diseño de Fármacos , Resistencia a Antineoplásicos/fisiología , Neoplasias/tratamiento farmacológico , Tecnología Farmacéutica/métodos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/metabolismo , Acridinas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Glicoconjugados/química , Humanos , Nanopartículas , Óxido Nítrico/metabolismo , Preparaciones de Plantas/farmacología , Preparaciones de Plantas/uso terapéutico , Polímeros/química
9.
Chemistry ; 26(60): 13627-13633, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32453464

RESUMEN

A novel molecular hybrid has been designed and synthesized in which acridine orange (AO) is covalently linked to an N-nitrosoaniline derivative through an alkyl spacer. Photoexcitation of the AO antenna with the highly biocompatible green light results in intense fluorescence emission and triggers NO detachment from the N-nitroso appendage via an intramolecular electron transfer. The presence of the AO moiety encourages the binding with DNA through both external and partially intercalative fashions, depending on the DNA:molecular hybrid molar ratio. Importantly, this dual-mode binding interaction with the biopolymer does not preclude the NO photoreleasing performances of the molecular hybrid, permitting NO to be photogenerated nearby DNA with an efficiency similar to that of the free molecule. These properties make the presented compound an intriguing candidate for fundamental and potential applicative research studies where NO delivery in the DNA proximity precisely regulated by harmless green light is required.


Asunto(s)
Naranja de Acridina , ADN , Óxido Nítrico , Colorantes Fluorescentes , Luz , Nitrosaminas , Procesos Fotoquímicos , Espectrometría de Fluorescencia
10.
Chemistry ; 25(47): 11080-11084, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31074543

RESUMEN

Two novel NO photodonors (NOPDs) based on BODIPY and Rhodamine antennae activatable with the highly biocompatible green light are reported. Both NOPDs exhibit considerable fluorescence emission and release NO with remarkable quantum efficiencies. The combination of the photoreleasing and emissive performance for both compounds is superior to those exhibited by other NOPDs based on similar light-harvesting centres, making them very intriguing for image-guided phototherapeutic applications. Preliminary biological data prove their easy visualization in cell environment due to the intense green and orange-red fluorescence and their photodynamic action on cancer cells due to the NO photo-liberated.

11.
Mol Pharm ; 16(10): 4181-4189, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31465230

RESUMEN

Paracetamol has been one of the most commonly used and prescribed analgesic drugs for more than a hundred years. Despite being generally well tolerated, it can result in high liver toxicity when administered in specific conditions, such as overdose, or in vulnerable individuals. We have synthesized and characterized a paracetamol galactosylated prodrug (PARgal) with the aim of improving both the pharmacodynamic and pharmacological profile of paracetamol. PARgal shows a range of physicochemical properties, solubility, lipophilicity, and chemical stability at differing physiological pH values and in human serum. PARgal could still be preclinically detected 2 h after administration, meaning that it displays reduced hepatic metabolism compared to paracetamol. In overdose conditions, PARgal has not shown any cytotoxic effect in in vitro analyses performed on human liver cells. Furthermore, when tested in an animal pain model, PARgal demonstrated a sustained analgesic effect up to the 12th hour after oral administration. These findings support the use of galactose as a suitable carrier in the development of prodrugs for analgesic treatment.


Asunto(s)
Acetaminofén/química , Analgésicos no Narcóticos/química , Analgésicos no Narcóticos/farmacología , Galactosa/química , Hiperalgesia/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Dolor Postoperatorio/tratamiento farmacológico , Profármacos/farmacología , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Proliferación Celular , Humanos , Hiperalgesia/patología , Neoplasias Hepáticas/patología , Masculino , Ratones , Dolor Postoperatorio/patología , Profármacos/química , Células Tumorales Cultivadas
12.
Bioorg Chem ; 85: 18-22, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30599409

RESUMEN

Combination of photosensitizers (PS) for photodynamic therapy with NO photodonors (NOPD) is opening intriguing horizons towards new and still underexplored multimodal anticancer and antibacterial treatments not based on "conventional" drugs and entirely controlled by light stimuli. In this contribution, we report an intriguing molecular hybrid based on a BODIPY light-harvesting antenna that acts simultaneously as PS and NOPD upon single photon excitation with the highly biocompatible green light. The presented hybrid offers a combination of superior advantages with respect to the other rare cases reported to date, meeting most of the key criteria for both PSs and NOPDs in the same molecular entity such as: (i) capability to generate 1O2 and NO with single photon excitation of biocompatible visible light, (ii) excellent 1O2 quantum yield and NO quantum efficiency, (iii) photogeneration of NO independent from the presence of oxygen, (iv) large light harvesting properties in the green region. Furthermore, this compound together with its stable photoproduct, is well tolerated by both normal and cancer cells in the dark and exhibits bimodal photomortality of cancer cells under green light excitation due to the combined action of the cytotoxic 1O2 and NO.


Asunto(s)
Compuestos de Boro/farmacología , Donantes de Óxido Nítrico/farmacología , Nitrosaminas/farmacología , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/farmacología , Antineoplásicos/efectos de la radiación , Antineoplásicos/toxicidad , Compuestos de Boro/efectos de la radiación , Compuestos de Boro/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Luz , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/efectos de la radiación , Donantes de Óxido Nítrico/toxicidad , Nitrosaminas/efectos de la radiación , Nitrosaminas/toxicidad , Fármacos Fotosensibilizantes/efectos de la radiación , Fármacos Fotosensibilizantes/toxicidad , Oxígeno Singlete/metabolismo
13.
Microbiology (Reading) ; 164(12): 1557-1566, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30300122

RESUMEN

Pseudomonas aeruginosa is a microorganism that is well adapted to both clinical and industrial settings, where it can form adherent communities that are difficult to eradicate. New anti-Pseudomonas compounds and strategies are necessary, as the current antimicrobial approaches for the inhibition of biofilm formation and, above all, the eradication of formed biofilms are ineffective. Compounds that belong to the furoxan family, which are well-known NO donors, have recently been shown to display anti-Pseudomonas activity. The present study investigates three furoxan compounds that are substituted at the hetero-ring with electron-withdrawing groups (NO2, CN, CONH2) for their effects on P. aeruginosa PAO1 growth and biofilm formation/dispersal. Of the furoxans tested, only 3-nitro-4-phenylfuroxan (KN455) inhibited the growth of suspended P. aeruginosa PAO1 cultures. Furthermore, KN455 inhibited the formation of both younger and older biofilms with very high yields and thus proved itself to be toxic to planktonic subpopulations. It also displayed moderate eradicating power. The activity of KN455 does not appear to be related to its capacity to release small amounts of NO. Interestingly, the isomer 4-nitro-3-phenylfuroxan (KN454), included for comparison, displayed a comparable antibiofilm rate, but did not show the same antimicrobial activity against suspended cells and planktonic subpopulations. While hypotheses as to the mechanism of action have been formulated, further investigations are necessary to shed light onto the antimicrobial activity of this furoxan.


Asunto(s)
Antibacterianos/farmacología , Donantes de Óxido Nítrico/farmacología , Oxadiazoles/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Óxido Nítrico/análisis , Donantes de Óxido Nítrico/química , Oxadiazoles/química , Pseudomonas aeruginosa/crecimiento & desarrollo
14.
Mol Pharm ; 15(1): 21-30, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29140706

RESUMEN

Ursodeoxycholic acid (UDCA) is considered the first-choice therapy for cholestatic disorders. To enhance solubility and exploit specific transporters in liver, we synthesized a new galactosyl pro-drug of UDCA (UDCAgal). Ethinylestradiol (EE)-induced cholestasis was used to study and compare the effects of UDCAgal with UDCA on bile flow, hepatic canalicular efflux transporter expression, and inflammation. UDCAgal resulted quite stable both at pH 7.4 and 1.2 and regenerated the parent drug after incubation in human plasma. Its solubility, higher than UDCA, was pH- and temperature-independent. UDCAgal displayed a higher cell permeation compared to UDCA in liver HepG2 cells. Moreover, in cholestatic rats, UDCAgal showed a higher potency compared to UDCA in reducing serum biomarkers (AST, ALT, and ALP) and cytokines (TNF-α and IL-1ß). The higher effect of UDCAgal on the increase in bile salt export pump and multidrug resistance-associated protein 2 transcription indicated an improved spillover of bile acids from the liver. UDCAgal showed a reduction in CCL2, as well as TNF-α, IL-1ß, and cyclooxygeanse-2 mRNAs, indicating a reduction in hepatic neutrophil accumulation and inflammation. Moreover, UDCAgal, similarly to UDCA, heightens bile flow and modulates biliary acids secretion. These results indicate that UDCAgal has a potential in the treatment of cholestatic disease.


Asunto(s)
Colestasis/tratamiento farmacológico , Estrógenos/toxicidad , Ácido Ursodesoxicólico/química , Ácido Ursodesoxicólico/uso terapéutico , Animales , Colestasis/metabolismo , Ciclooxigenasa 2/sangre , Etinilestradiol/toxicidad , Células Hep G2 , Humanos , Interleucina-1beta/sangre , Masculino , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/sangre , Profármacos/síntesis química , Profármacos/química , Profármacos/uso terapéutico , Ratas , Ratas Wistar , Solubilidad , Factor de Necrosis Tumoral alfa/sangre , Ácido Ursodesoxicólico/síntesis química
15.
Mol Pharm ; 15(8): 3101-3110, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-29912563

RESUMEN

Aceclofenac is a popular analgesic, antipyretic, and nonsteroidal anti-inflammatory drug (NSAID) used for prolonged treatment (at least three months) in musculoskeletal disorders. It is characterized by several limitations such as poor water solubility and low oral bioavailability. The main side-effect of aceclofenac, as well as all NSAIDs, is the gastrotoxicity; among other adverse effects, there is the risk of bleeding since aceclofenac reversibly inhibits platelet aggregation. With the aim to reduce these drawbacks, we have designed, synthesized, and characterized, both in vitro and in vivo, an orally administrable pro-drug of aceclofenac (ACEgal). ACEgal was obtained by conjugating carboxyl group with the 6-OH group of d-galactose; its structure was confirmed by X-ray powder diffractometry. The pro-drug was shown to be stable at 37 °C in simulated gastric fluid (SGF-without pepsin, pH = 1.2) and moderately stable in phosphate buffered saline (PBS, pH = 7.4). However, it hydrolyzed in human serum with a half-life ( t1/2) of 36 min, producing aceclofenac. Furthermore, if compared to its parent drug, ACEgal was four-times more soluble in SGF. To predict human intestinal absorption, cell permeability in a Caco-2 model of aceclofenac and ACEgal was determined. Anti-inflammatory, analgesic, and ulcerogenic activities have been investigated in vivo. In addition, oxidative stress parameters (thiobarbituric acid reactive substances, TBARS, and glutathione, GSH) and platelet antiaggregatory activity both of parent drug and pro-drug were evaluated. Results clearly showed that the conjugation of aceclofenac to a galactose molecule improves physicochemical, toxicological (at gastric and blood level), and pharmacological profile of aceclofenac itself without changing intestinal permeability and antiplatelet activity (in spite the new sugar moiety).


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Diclofenaco/análogos & derivados , Portadores de Fármacos/química , Galactosa/química , Profármacos/administración & dosificación , Dolor Agudo/tratamiento farmacológico , Dolor Agudo/etiología , Administración Oral , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/toxicidad , Disponibilidad Biológica , Células CACO-2 , Carragenina/toxicidad , Diclofenaco/administración & dosificación , Diclofenaco/química , Diclofenaco/farmacocinética , Diclofenaco/toxicidad , Modelos Animales de Enfermedad , Composición de Medicamentos/métodos , Edema/inducido químicamente , Edema/tratamiento farmacológico , Mucosa Gástrica/efectos de los fármacos , Humanos , Hidrólisis , Mucosa Intestinal/efectos de los fármacos , Masculino , Ratones , Permeabilidad , Agregación Plaquetaria/efectos de los fármacos , Profármacos/química , Profármacos/farmacocinética , Profármacos/toxicidad , Solubilidad , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/epidemiología
16.
Chemistry ; 23(38): 9026-9029, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28543638

RESUMEN

Using a facile synthetic route, an organic NO release agent based on a BODIPY light-harvesting antenna was devised. This compound is stable in the dark and delivers NO under photoexcitation with biologically favorable green light. Temporally regulated vasodilation capability is demonstrated on rat aorta by green-light-induced NO release.


Asunto(s)
Donantes de Óxido Nítrico/química , Óxido Nítrico/química , Compuestos de Boro/química , Cromatografía Líquida de Alta Presión/métodos , Liberación de Fármacos , Humanos , Luz , Fotones , Espectrometría de Fluorescencia/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Vasodilatación/efectos de los fármacos
17.
Bioorg Med Chem Lett ; 27(3): 479-483, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28027869

RESUMEN

A small series of water-soluble NO-donor furoxans bearing a basic center at the 4-position, having a wide lipophilic-hydrophilic balance range, and endowed with different NO-release capacities, were synthesized and characterized. Selected members were studied for their IOP-lowering activity in the transient ocular hypertensive rabbit model at 1% dose. The most effective IOP-lowering products were compounds 3 and 7, whose activity 60min after administration was similar to that of Timolol. Notably, 7 was characterized by a long-lasting action. The IOP-lowering activity in this series of products appeared to be modulated by the lipophilic-hydrophilic balance rather than by the NO-donor capacity.


Asunto(s)
Oxadiazoles/química , Animales , Antihipertensivos/química , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Modelos Animales de Enfermedad , Glaucoma/tratamiento farmacológico , Presión Intraocular/efectos de los fármacos , Óxido Nítrico/metabolismo , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/patología , Oxadiazoles/farmacología , Oxadiazoles/uso terapéutico , Conejos , Solubilidad , Timolol/farmacología , Timolol/uso terapéutico
18.
Bioorg Med Chem ; 22(15): 3913-21, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25022971

RESUMEN

A series of furazan and furoxan sulfonamides were prepared and studied for their ability to inhibit human carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I, hCA II, hCA IX, and hCA XII. The simple methyl substituted products 3-5 were potent inhibitors. Differing structural modifications of these leads had differing effects on potency and selectivity. In particular, products in which the sulfonamide group is separated from the hetero ring by a phenylene bridge retained high potency only on the hCA XII isoform. The sulfonamides 3-5 exerted intraocular pressure (IOP) lowering effects in vivo in hypertensive rabbits more efficiently than dorzolamide. Some other products (39-42), although less effective in vitro hCA II/XII inhibitors, also effectively lowered IOP in two different animal models of glaucoma.


Asunto(s)
Antineoplásicos/química , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/química , Oxadiazoles/química , Sulfonamidas/química , Resinas Acrílicas/toxicidad , Animales , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Anhidrasas Carbónicas/metabolismo , Modelos Animales de Enfermedad , Glaucoma/inducido químicamente , Glaucoma/tratamiento farmacológico , Humanos , Masculino , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Conejos , Sulfonamidas/síntesis química , Sulfonamidas/uso terapéutico
19.
Sci Rep ; 14(1): 8272, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594253

RESUMEN

Human hemoglobin (Hb) is the preferred iron source of Staphylococcus aureus. This pathogenic bacterium exploits a sophisticated protein machinery called Iron-regulated surface determinant (Isd) system to bind Hb, extract and internalize heme, and finally degrade it to complete iron acquisition. IsdB, the surface exposed Hb receptor, is a proven virulence factor of S. aureus and the inhibition of its interaction with Hb can be pursued as a strategy to develop new classes of antimicrobials. To identify small molecules able to disrupt IsdB:Hb protein-protein interactions (PPIs), we carried out a structure-based virtual screening campaign and developed an ad hoc immunoassay to screen the retrieved set of commercially available compounds. Saturation-transfer difference (STD) NMR was applied to verify specific interactions of a sub-set of molecules, chosen based on their efficacy in reducing the amount of Hb bound to IsdB. Among molecules for which direct binding was verified, the best hit was submitted to ITC analysis to measure the binding affinity to Hb, which was found to be in the low micromolar range. The results demonstrate the viability of the proposed in silico/in vitro experimental pipeline to discover and test IsdB:Hb PPI inhibitors. The identified lead compound will be the starting point for future SAR and molecule optimization campaigns.


Asunto(s)
Proteínas de Transporte de Catión , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Hemoglobinas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hemo/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Hierro/metabolismo
20.
Mol Pharm ; 10(1): 161-74, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23186264

RESUMEN

In previous studies, we showed that nitric oxide (NO) donors and synthetic doxorubicins (DOXs) modified with moieties containing NO-releasing groups--such as nitrooxy-DOX (NitDOX) or 3-phenylsulfonylfuroxan-DOX (FurDOX)--overcome drug resistance by decreasing the activity of ATP-binding cassette (ABC) transporters that can extrude the drug. Here, we have investigated the biochemical mechanisms by which NitDOX and FurDOX exert antitumor effects. Both NitDOX and FurDOX were more cytotoxic than DOX against drug-resistant cells. Interestingly, NitDOX exhibited a faster uptake and an extranuclear distribution. NitDOX was preferentially localized in the mitochondria, where it nitrated and inhibited the mitochondria-associated ABC transporters, decreased the flux through the tricarboxylic acid cycle, slowed down the activity of complex I, lowered the synthesis of ATP, induced oxidative and nitrosative stress, and elicited the release of cytochrome c and the activation of caspase-9 and -3 in DOX-resistant cells. We suggest that NitDOX may represent the prototype of a new class of multifunctional anthracyclines, which have cellular targets different from conventional anthracyclines and greater efficacy against drug-resistant tumors.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacología , Mitocondrias/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/farmacología , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Citocromos c/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Resistencia a Antineoplásicos , Complejo I de Transporte de Electrón/metabolismo , Células HT29 , Humanos , Células K562 , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA