Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 625(7996): 743-749, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233522

RESUMEN

Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.


Asunto(s)
Reacción de Prevención , Núcleo Amigdalino Central , Vías Nerviosas , Neuronas , Reacción de Prevención/fisiología , Núcleo Amigdalino Central/citología , Núcleo Amigdalino Central/fisiología , Neuronas/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Vías Nerviosas/fisiología , Calcio/análisis , Electrofisiología , Puente/citología , Puente/fisiología
2.
Behav Brain Res ; 389: 112623, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32348872

RESUMEN

Females exhibit greater susceptibility to trauma- and stress-related disorders compared to males; therefore, it is imperative to study sex differences in the mode and magnitude of defensive responses in the face of threat. To test for sex differences in defensive behavior, we used a modified Pavlovian fear conditioning paradigm that elicits clear transitions between freezing and flight behaviors within individual subjects. Female mice subjected to this paradigm exhibited more freezing behavior compared to males, especially during the intertrial interval period. Female mice also exhibited more freezing in response to conditioned auditory stimuli in the last block of extinction training. Furthermore, there were sex differences in the expression of other adaptive behaviors during fear conditioning. Assaying rearing, grooming, and tail rattling behaviors during the conditioned flight paradigm yielded measurable differences across sessions and between males and females. Overall, these results provide insight into sex-dependent alterations in mouse behavior induced by fear conditioning.


Asunto(s)
Reacción de Prevención , Condicionamiento Clásico , Miedo , Caracteres Sexuales , Animales , Conducta Animal , Extinción Psicológica , Femenino , Aseo Animal , Masculino , Ratones Endogámicos C57BL
3.
Stem Cell Res Ther ; 9(1): 154, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29895321

RESUMEN

Neural stem cells (NSCs) play vital roles in brain homeostasis and exhibit a broad repertoire of potentially therapeutic actions following neurovascular injury. One such injury is stroke, a worldwide leading cause of death and disability. Clinically, extensive injury from ischemic stroke results from ischemia-reperfusion (IR), which is accompanied by inflammation, blood-brain barrier (BBB) damage, neural cell death, and extensive tissue loss. Tissue plasminogen activator (tPA) is still the only US Food and Drug Administration-approved clot-lysing agent. Whereas the thrombolytic role of tPA within the vasculature is beneficial, the effects of tPA (in a non-thrombolytic role) within the brain parenchyma have been reported as harmful. Thus, new therapies are needed to reduce the deleterious side effects of tPA and quickly facilitate vascular repair following stroke. The Stroke Treatment Academic Industry Roundtable (STAIR) recommends that stroke therapies "focus on drugs/devices/treatments with multiple mechanisms of action and that target multiple pathways". Thus, based on multifactorial ischemic cascades in various stroke stages, effective stroke therapies need to focus on targeting and ameliorating early IR injury as well as facilitating angiogenesis, neurogenesis, and neurorestorative mechanisms following stroke. This review will discuss the preclinical perspectives of NSC transplantation as a promising treatment for neurovascular injury and will emphasize both the subacute and chronic phase of ischemic stroke.


Asunto(s)
Isquemia Encefálica/terapia , Trasplante de Células Madre/métodos , Accidente Cerebrovascular/terapia , Activador de Tejido Plasminógeno/uso terapéutico , Isquemia Encefálica/patología , Enfermedad Crónica , Humanos , Accidente Cerebrovascular/patología , Activador de Tejido Plasminógeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA