Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 166(1): 102-14, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27293192

RESUMEN

Co-option of RAG1 and RAG2 for antigen receptor gene assembly by V(D)J recombination was a crucial event in the evolution of jawed vertebrate adaptive immunity. RAG1/2 are proposed to have arisen from a transposable element, but definitive evidence for this is lacking. Here, we report the discovery of ProtoRAG, a DNA transposon family from lancelets, the most basal extant chordates. A typical ProtoRAG is flanked by 5-bp target site duplications and a pair of terminal inverted repeats (TIRs) resembling V(D)J recombination signal sequences. Between the TIRs reside tail-to-tail-oriented, intron-containing RAG1-like and RAG2-like genes. We demonstrate that ProtoRAG was recently active in the lancelet germline and that the lancelet RAG1/2-like proteins can mediate TIR-dependent transposon excision, host DNA recombination, transposition, and low-efficiency TIR rejoining using reaction mechanisms similar to those used by vertebrate RAGs. We propose that ProtoRAG represents a molecular "living fossil" of the long-sought RAG transposon.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Anfioxos/genética , Recombinación V(D)J , Animales , Proteínas de Unión al ADN , Proteínas de Homeodominio , Secuencias Repetidas Terminales
2.
Nature ; 564(7734): 64-70, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30464347

RESUMEN

Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.


Asunto(s)
Regulación de la Expresión Génica , Genómica , Anfioxos/genética , Vertebrados/genética , Animales , Tipificación del Cuerpo/genética , Metilación de ADN , Humanos , Anfioxos/embriología , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas , Transcriptoma/genética
3.
PLoS Genet ; 16(12): e1009294, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33382716

RESUMEN

Studies in various animals have shown that asymmetrically localized maternal transcripts play important roles in axial patterning and cell fate specification in early embryos. However, comprehensive analyses of the maternal transcriptomes with spatial information are scarce and limited to a handful of model organisms. In cephalochordates (amphioxus), an early branching chordate group, maternal transcripts of germline determinants form a compact granule that is inherited by a single blastomere during cleavage stages. Further blastomere separation experiments suggest that other transcripts associated with the granule are likely responsible for organizing the posterior structure in amphioxus; however, the identities of these determinants remain unknown. In this study, we used high-throughput RNA sequencing of separated blastomeres to examine asymmetrically localized transcripts in two-cell and eight-cell stage embryos of the amphioxus Branchiostoma floridae. We identified 111 and 391 differentially enriched transcripts at the 2-cell stage and the 8-cell stage, respectively, and used in situ hybridization to validate the spatial distribution patterns for a subset of these transcripts. The identified transcripts could be categorized into two major groups: (1) vegetal tier/germ granule-enriched and (2) animal tier/anterior-enriched transcripts. Using zebrafish as a surrogate model system, we showed that overexpression of one animal tier/anterior-localized amphioxus transcript, zfp665, causes a dorsalization/anteriorization phenotype in zebrafish embryos by downregulating the expression of the ventral gene, eve1, suggesting a potential function of zfp665 in early axial patterning. Our results provide a global transcriptomic blueprint for early-stage amphioxus embryos. This dataset represents a rich platform to guide future characterization of molecular players in early amphioxus development and to elucidate conservation and divergence of developmental programs during chordate evolution.


Asunto(s)
Blastómeros/metabolismo , Anfioxos/genética , Herencia Materna , Transcriptoma , Animales , Regulación del Desarrollo de la Expresión Génica , Anfioxos/embriología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra
4.
BMC Biol ; 20(1): 152, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761237

RESUMEN

BACKGROUND: Vertebrates develop their peripheral nervous system (PNS) from transient unique embryonic structures, the neural crest, and the ectodermal placodes that are located at the border of the forming central nervous system. By contrast, in the invertebrate chordates, amphioxus and ascidians, a large part of the PNS originates at the opposite of the embryo, in the ventral ectoderm. In both groups, a biphasic mechanism regulates ventral PNS formation: high BMP levels specify a neurogenic territory within which glutamatergic epidermal sensory neuron formation is controlled by the Notch pathway. Given these similarities and the phylogenetic relationships within chordates, it is likely that ventral PNS is an ancestral feature in chordates and that it has been lost in vertebrates. RESULTS: In order to get insights into the molecular control of ventral PNS formation and to test the hypothesis of their homology and potential contribution to the emergence of vertebrate PNS, we undertook a close comparison of ventral PNS formation in the ascidian Phallusia mammillata and the amphioxus Branchiostoma lanceolatum. Using timed RNA-seq series, we identified novel markers of the ventral PNS during different phases of its development in both species. By extensively determining the expression of paralogous and orthologous genes, we observed that only a minority of genes have a shared expression in the ventral PNS. However, a large fraction of ventral PNS orthologous genes are expressed in the dorsally forming PNS of vertebrates. CONCLUSIONS: Our work has significantly increased the molecular characterization of ventral PNS formation in invertebrate chordates. The low observed conservation of gene expression in the ventral PNS suggests that the amphioxus and ascidian ventral PNS are either not homologous, or alternatively extensive drift has occurred in their regulatory mechanisms following a long period (600 My) of separate evolution and accelerated evolution in the ascidian lineage. The homology to genes expressed in the dorsally forming PNS of vertebrates suggests that ancestral sensory neurons gene networks have been redeployed in vertebrates.


Asunto(s)
Anfioxos , Urocordados , Animales , Ectodermo , Regulación del Desarrollo de la Expresión Génica , Anfioxos/genética , Sistema Nervioso Periférico , Filogenia , Urocordados/genética , Vertebrados/genética
5.
Hum Mol Genet ; 20(6): 1122-31, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21196490

RESUMEN

Genetics of Holoprosencephaly (HPE), a congenital malformation of the developing human forebrain, is due to multiple genetic defects. Most genes that have been implicated in HPE belong to the sonic hedgehog signaling pathway. Here we describe a new candidate gene isolated from array comparative genomic hybridization redundant 6qter deletions, DELTA Like 1 (DLL1), which is a ligand of NOTCH. We show that DLL1 is co-expressed in the developing chick forebrain with Fgf8. By treating chick embryos with a pharmacological inhibitor, we demonstrate that DLL1 interacts with FGF signaling pathway. Moreover, a mutation analysis of DLL1 in HPE patients revealed a three-nucleotide deletion. These various findings implicate DLL1 in early patterning of the forebrain and identify NOTCH as a new signaling pathway involved in HPE.


Asunto(s)
Holoprosencefalia/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Adulto , Secuencia de Aminoácidos , Androstenodioles , Animales , Secuencia de Bases , Embrión de Pollo , Femenino , Holoprosencefalia/genética , Humanos , Recién Nacido , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Receptores Notch/genética , Alineación de Secuencia , Eliminación de Secuencia
6.
Methods Mol Biol ; 2047: 347-359, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31552664

RESUMEN

In the last decades, the cephalochordate amphioxus has reached a peculiar place in research laboratories as an excellent animal model to answer Evo/Devo questions. Nevertheless, mainly due to its restricted spawning season and to the small size of its embryos, only a few basic techniques in developmental biology could be used until recently. Fortunately, these last years, and thanks to the development of high-throughput techniques, new technical approaches have been possible, such as comparative transcriptomics and/or genomics. However, classic micromanipulation techniques are still difficult to apply. Here we present simple protocols for the manipulation of amphioxus embryos. First, we present the spawning induction method used with the European amphioxus species Branchiostoma lanceolatum. Second, we explain simple methods to manipulate the developing amphioxus embryo during the first steps of its development (before the hatching stage). These methods open many technical possibilities for future functional studies. Thus, we present here a simple technique to efficiently dechorionate a large number of embryos, we detail a protocol for the dissociation of cells during the first steps of the embryonic development and, finally, we describe micromanipulation approaches for tissue isolation during the gastrula stage.


Asunto(s)
Embrión de Mamíferos/fisiología , Anfioxos/embriología , Anfioxos/fisiología , Reproducción/fisiología , Animales , Ectodermo/embriología , Ectodermo/fisiología , Gástrula/embriología , Gástrula/fisiología
7.
Int J Dev Biol ; 61(10-11-12): 697-722, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29319118

RESUMEN

During embryonic development, cells of metazoan embryos need to communicate in order to construct the correct bodyplan. To do so, they use several signals that usually act through interactions between ligands and receptors. Interestingly, only a few pathways are known to be fundamental during animal development, and they are usually found in all the major metazoan clades, raising the following question: how have evolution of the actors and of the functions of these pathways participated in the appearance of the current diversity of animal morphologies? The chordate lineage comprises vertebrates, their sister group the urochordates, and the cephalochordates (i.e. amphioxus). Urochordates are quite derived relative to the chordate ancestor, whereas cephalochordates and vertebrates share many morphological traits. Thus, comparing embryonic development between vertebrates and cephalochordates should give us some insight into the ancestral characters present in chordates and into the morphological evolution in this clade. However, while much is known about the function of different signalling pathways in vertebrates, data are still scarce in the literature for cephalochordates. In this review, we summarize the current state of the field concerning the expression of actors and the function of the major cell-cell communication pathways, including Hedgehog (Hh), Notch, Nuclear Receptor (NR), Receptor Tyrosine Kinase (RTK), Transforming Growth Factor-ß (TGF-ß) and Wingless/Int (Wnt), in amphioxus.


Asunto(s)
Comunicación Celular/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Anfioxos/genética , Transducción de Señal/genética , Animales , Cefalocordados/embriología , Cefalocordados/genética , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Anfioxos/embriología , Modelos Genéticos
8.
Nat Ecol Evol ; 1(8): 1192-1200, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28782045

RESUMEN

Neural induction is the process through which pluripotent cells are committed to a neural fate. This first step of Central Nervous System formation is triggered by the "Spemann organizer" in amphibians and by homologous embryonic regions in other vertebrates. Studies in classical vertebrate models have produced contrasting views about the molecular nature of neural inducers and no unifying scheme could be drawn. Moreover, how this process evolved in the chordate lineage remains an unresolved issue. In this work, by using graft and micromanipulation experiments, we definitively establish that the dorsal blastopore lip of the cephalochordate amphioxus is homologous to the vertebrate organizer and is able to trigger the formation of neural tissues in a host embryo. In addition, we demonstrate that Nodal/Activin is the main signal eliciting neural induction in amphioxus, and that it also functions as a bona fide neural inducer in the classical vertebrate model Xenopus. Altogether, our results allow us to propose that Nodal/Activin was a major player of neural induction in the ancestor of chordates. This study further reveals the diversity of neural inducers deployed during chordate evolution and advocates against a universally conserved molecular explanation for this process.

9.
PLoS One ; 10(3): e0119461, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25774519

RESUMEN

Insulin is one of the most studied proteins since it is central to the regulation of carbohydrate and fat metabolism in vertebrates and its expression and release are disturbed in diabetes, the most frequent human metabolic disease worldwide. However, the evolution of the function of the insulin protein family is still unclear. In this study, we present a phylogenetic and developmental analysis of the Insulin Like Peptide (ILP) in the cephalochordate amphioxus. We identified an ILP in the European amphioxus Branchiostoma lanceolatum that displays structural characteristics of both vertebrate insulin and Insulin-like Growth Factors (IGFs). Our phylogenetic analysis revealed that amphioxus ILP represents the sister group of both vertebrate insulin and IGF proteins. We also characterized both temporal and spatial expression of ILP in amphioxus. We show that ilp is highly expressed in endoderm and paraxial mesoderm during development, and mainly expressed in the gut of both the developing embryo and adult. We hypothesize that ILP has critical implications in both developmental processes and metabolism and could display IGF- and insulin-like functions in amphioxus supporting the idea of a common ancestral protein.


Asunto(s)
Cefalocordados/metabolismo , Insulina/aislamiento & purificación , Péptidos/aislamiento & purificación , Somatomedinas/aislamiento & purificación , Animales , Cefalocordados/genética , Endodermo/metabolismo , Evolución Molecular , Insulina/genética , Insulina/metabolismo , Mesodermo/metabolismo , Péptidos/genética , Péptidos/metabolismo , Filogenia , Somatomedinas/genética , Somatomedinas/metabolismo
10.
Gene Expr Patterns ; 13(8): 377-83, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23872339

RESUMEN

Bone morphogenetic proteins (BMPs) are members of the Transforming Growth Factor-ß (TGF-ß) family implicated in many developmental processes in metazoans such as embryo axes specification. Their wide variety of actions is in part controlled by inhibitors that impede the interaction of BMPs with their specific receptors. Here, we focused our attention on the Differential screening-selected gene Aberrative in Neuroblastoma (DAN) family of inhibitors. Although they are well-characterized in vertebrates, few data are available for this family in other metazoan species. In order to understand the evolution of potential developmental roles of these inhibitors in chordates, we identified the members of this family in the cephalochordate amphioxus, and characterized their expression patterns during embryonic development. Our data suggest that the function of Cerberus/Dand5 subfamily genes is conserved among chordates, whereas Gremlin1/2 and NBL1 subfamily genes seem to have acquired divergent expression patterns in each chordate lineage. On the other hand, the expression of Gremlin in the amphioxus neural plate border during early neurulation strengthens the hypothesis of a conserved neural plate border gene network in chordates.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Anfioxos/metabolismo , Animales , Clonación Molecular , Embrión no Mamífero/metabolismo , Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Anfioxos/embriología , Anfioxos/genética , Filogenia , Transducción de Señal
11.
PLoS One ; 7(5): e36554, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22590565

RESUMEN

BACKGROUND: The basally divergent phylogenetic position of amphioxus (Cephalochordata), as well as its conserved morphology, development and genetics, make it the best proxy for the chordate ancestor. Particularly, studies using the amphioxus model help our understanding of vertebrate evolution and development. Thus, interest for the amphioxus model led to the characterization of both the transcriptome and complete genome sequence of the American species, Branchiostoma floridae. However, recent technical improvements allowing induction of spawning in the laboratory during the breeding season on a daily basis with the Mediterranean species Branchiostoma lanceolatum have encouraged European Evo-Devo researchers to adopt this species as a model even though no genomic or transcriptomic data have been available. To fill this need we used the pyrosequencing method to characterize the B. lanceolatum transcriptome and then compared our results with the published transcriptome of B. floridae. RESULTS: Starting with total RNA from nine different developmental stages of B. lanceolatum, a normalized cDNA library was constructed and sequenced on Roche GS FLX (Titanium mode). Around 1.4 million of reads were produced and assembled into 70,530 contigs (average length of 490 bp). Overall 37% of the assembled sequences were annotated by BlastX and their Gene Ontology terms were determined. These results were then compared to genomic and transcriptomic data of B. floridae to assess similarities and specificities of each species. CONCLUSION: We obtained a high-quality amphioxus (B. lanceolatum) reference transcriptome using a high throughput sequencing approach. We found that 83% of the predicted genes in the B. floridae complete genome sequence are also found in the B. lanceolatum transcriptome, while only 41% were found in the B. floridae transcriptome obtained with traditional Sanger based sequencing. Therefore, given the high degree of sequence conservation between different amphioxus species, this set of ESTs may now be used as the reference transcriptome for the Branchiostoma genus.


Asunto(s)
Cordados/genética , Filogenia , ARN/genética , Transcriptoma , Animales , Secuencia de Bases , Datos de Secuencia Molecular , ARN/biosíntesis , Análisis de Secuencia de ARN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA