Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Acoust Soc Am ; 155(3): 1641-1654, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426841

RESUMEN

The measurement of the pressure field radiated by a sound source has many applications in the fields of noise control and loudspeaker system design. In this paper, the radiation mode method is used to measure the field radiated by a complex acoustic source whose surface impedance is arbitrary and does not correspond to the Neumann boundary condition used for the calculation of radiation modes. The most effective radiation modes are used as test functions to calculate a pressure expansion around the source under test, an expansion that matches the measured pressure at a limited number of points close to the source. This expansion is then used to calculate the radiated pressure at a greater distance at unmeasured locations. In a first step, numerical simulations are performed to evaluate the method's most influential parameters. Then, measurements are performed in a semi-anechoic room on two real sources of increasing complexity. Obtained results show that the radiation mode method allows an accurate evaluation of the pressure field radiated by the test object over a fairly wide frequency band (between 100 Hz and 2 kHz) even for complex sources.

2.
J Acoust Soc Am ; 126(5): 2367-78, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19894820

RESUMEN

The aim of this work is to continuously provide the acoustic pressure field radiated from nonstationary sources. From the acquisition in the nearfield of the sources of a planar acoustic field which fluctuates in time, the method gives instantaneous sound field with respect to time by convolving wavenumber spectra with impulse response and then inverse Fourier transforming into space for each time step. The quality of reconstruction depends on the impulse response which is composed of investigated parameters as transition frequency and propagation distance. Sampling frequency also affects errors of the practically discrete impulse response used for calculation. To avoid aliasing, the impulse response is low-pass filtered with Chebyshev or Kaiser-Bessel filter. Another approach to implement the impulse response consists of applying an inverse Fourier transform to the theoretical transfer function for propagation. To estimate the performance of each processing method, a simulation test involving several source monopoles driven by nonstationary signals is executed. Some indicators are proposed to assess the accuracy of the temporal signals predicted in a forward plane. The results show that the use of a Kaiser-Bessel filter numerically implemented or that of the inverse Fourier transform can provide the most accurate instantaneous acoustic signals.


Asunto(s)
Acústica , Modelos Teóricos , Procesamiento de Señales Asistido por Computador , Simulación por Computador , Análisis de Fourier , Presión , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA