Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Value Health ; 22(1): 77-84, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30661637

RESUMEN

BACKGROUND: Relapsing-remitting multiple sclerosis (RRMS) has a major impact on affected patients; therefore, improved understanding of RRMS is important, particularly in the context of real-world evidence. OBJECTIVES: To develop and validate algorithms for identifying patients with RRMS in both unstructured clinical notes found in electronic health records (EHRs) and structured/coded health care claims data. METHODS: US Integrated Delivery Network data (2010-2014) were queried for study inclusion criteria (possible multiple sclerosis [MS] base cohort): one or more MS diagnosis code, patients aged 18 years or older, 1 year or more baseline history, and no other demyelinating diseases. Sets of algorithms were developed to search narrative text of unstructured clinical notes (EHR clinical notes-based algorithms) and structured/coded data (claims-based algorithms) to identify adult patients with RRMS, excluding patients with evidence of progressive MS. Medical records were reviewed manually for algorithm validation. Positive predictive value was calculated for both EHR clinical notes-based and claims-based algorithms. RESULTS: From a sample of 5308 patients with possible MS, 837 patients with RRMS were identified using only the EHR clinical notes-based algorithms and 2271 patients were identified using only the claims-based algorithms; 779 patients were identified using both algorithms. The positive predictive value was 99.1% (95% confidence interval [CI], 94.2%-100%) for the EHR clinical notes-based algorithms and 94.6% (95% CI, 89.1%-97.8%) to 94.9% (95% CI, 89.8%-97.9%) for the claims-based algorithms. CONCLUSIONS: The algorithms evaluated in this study identified a real-world cohort of patients with RRMS without evidence of progressive MS that can be studied in clinical research with confidence.


Asunto(s)
Reclamos Administrativos en el Cuidado de la Salud , Algoritmos , Minería de Datos/métodos , Prestación Integrada de Atención de Salud , Registros Electrónicos de Salud , Clasificación Internacional de Enfermedades , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Adulto , Anciano , Bases de Datos Factuales , Femenino , Humanos , Factores Inmunológicos/uso terapéutico , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/clasificación , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Reproducibilidad de los Resultados , Estudios Retrospectivos , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA