Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trends Biochem Sci ; 48(2): 100-102, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36435675

RESUMEN

Training to enhance the effectiveness of oral presentations is often neglected in science, technology, engineering, and mathematics (STEM) fields. In this article, we summarize our experience of teaching a semester-long class in speaking skills to STEM graduate students and advocate for the critical importance of these skills to professional success.


Asunto(s)
Estudiantes , Tecnología , Humanos , Tecnología/educación , Matemática , Educación de Postgrado
2.
Plant Dis ; 106(9): 2392-2402, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35196103

RESUMEN

Sudden death syndrome (SDS), caused by Fusarium virguliforme, causes substantial yield losses in soybean. However, relationships between soybean yield and components of disease progress, including time of disease onset, are poorly understood. Individual soybean plants (2018) and quadrats (2016 to 2018) were monitored in commercial fields and experimental plots in Iowa to quantify the impact of SDS foliar symptom onset on final SDS intensity, soybean yield components, and yield. The date when SDS foliar symptoms were first detected (onset time) and progress of SDS incidence and severity were recorded weekly. Individual soybean plants and quadrats were harvested at the end of each season. Beta-regression showed that date of SDS onset had a consistent and stable effect on final disease intensity both at individual plant and quadrat levels. The slope of the relationship between date of SDS onset and final SDS severity was common across all field sites and years. Weighted linear regression revealed that SDS onset explained 60 to 83% of the variation in number of pods, number of seeds, and total seed weight in individual plants, and 94 to 97% of the variation in seed yield in quadrats. Soybean yield damage functions (slopes) indicated that for each day SDS onset was delayed, soybean yield increased by 30.5 to 31.3 kg/ha. This new quantitative information improves understanding of the impact of SDS on final disease intensity and soybean yield. Further experiments are needed to determine how this relationship is affected by site-specific factors.


Asunto(s)
Glycine max , Enfermedades de las Plantas , Muerte Súbita , Iowa , Semillas
3.
Plant Dis ; 103(12): 3234-3243, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31573433

RESUMEN

Fusarium oxysporum (Fo) is an important pathogen that reduces soybean yield by causing seedling disease and root rot. This study assessed the effects of pH and temperature on Fo fungal growth and seedling disease. In an in vitro assay, 14 Fo isolates collected from symptomatic soybean roots across Iowa in 2007 were grown on artificial culture media at five pH levels (4, 5, 6, 7, and 8) and incubated at four temperatures (15, 20, 25, or 30°C). In a rolled-towel assay, soybean seeds from Fo-susceptible cultivar Jack were inoculated with a suspension of a pathogenic or a nonpathogenic Fo isolate; both isolates were previously designated for their relative aggressiveness in causing root rot at 25°C. The seeds were placed in rolled germination paper, and the rolls were incubated in all combinations of buffer solutions at four pH levels (4, 5, 6, and 7), and four temperatures (15, 20, 25, or 30°C). There was a significant interaction between temperature and pH (P < 0.05) for in vitro radial growth and root rot severity. Isolates showed the most in vitro radial growth after incubation at pH 6 and 25°C. For the rolled-towel assay, the pathogenic isolate caused the most severe root rot at pH 6 and 30°C. Gaussian regression analysis estimates for optimal conditions were pH 6.3 at 27.1°C for maximal fungal growth and pH 5.9 at 30°C for maximal root rot severity. These results indicate that optimal pH and temperature conditions are similar for Fo growth and disease in soybean seedlings and suggest that Fo may be a more important seedling pathogen when soybeans are planted under warm conditions in moderately acidic soils.


Asunto(s)
Fusarium , Glycine max , Temperatura , Fusarium/crecimiento & desarrollo , Fusarium/fisiología , Concentración de Iones de Hidrógeno , Iowa , Enfermedades de las Plantas/microbiología , Plantones/microbiología , Glycine max/microbiología
4.
Phytopathology ; 105(12): 1601-11, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26368513

RESUMEN

The ability to accurately detect and quantify Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, in samples such as plant root tissue and soil is extremely valuable for accurate disease diagnoses and to address research questions. Numerous quantitative real-time polymerase chain reaction (qPCR) assays have been developed for this pathogen but their sensitivity and specificity for F. virguliforme have not been compared. In this study, six qPCR assays were compared in five independent laboratories using the same set of DNA samples from fungi, plants, and soil. Multicopy gene-based assays targeting the ribosomal DNA intergenic spacer (IGS) or the mitochondrial small subunit (mtSSU) showed relatively high sensitivity (limit of detection [LOD] = 0.05 to 5 pg) compared with a single-copy gene (FvTox1)-based assay (LOD = 5 to 50 pg). Specificity varied greatly among assays, with the FvTox1 assay ranking the highest (100%) and two IGS assays being slightly less specific (95 to 96%). Another IGS assay targeting four SDS-causing fusaria showed lower specificity (70%), while the two mtSSU assays were lowest (41 and 47%). An IGS-based assay showed consistently highest sensitivity (LOD = 0.05 pg) and specificity and inclusivity above 94% and, thus, is suggested as the most useful qPCR assay for F. virguliforme diagnosis and quantification. However, specificity was also above 94% in two other assays and their selection for diagnostics and research will depend on objectives, samples, and materials used. These results will facilitate both fundamental and disease management research pertinent to SDS.


Asunto(s)
Fusarium/aislamiento & purificación , Glycine max/microbiología , Reacción en Cadena de la Polimerasa/estadística & datos numéricos , Microbiología del Suelo , Fusarium/genética , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa/métodos
5.
PLoS One ; 14(5): e0215653, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31116746

RESUMEN

Ethylene is a gaseous hormone that regulates plant responses to biotic and abiotic stresses. To investigate the importance of ethylene in soybean resistance to Fusarium virguliforme (Fv), the causal agent of sudden death syndrome (SDS), soybean cultivars Williams 82 (SDS-susceptible) and MN1606 (SDS-resistant) were treated 24 h before and 24h after Fv inoculation with either ethephon (ethylene inducer), cobalt chloride (ethylene biosynthesis inhibitor), or 1-MCP (ethylene perception inhibitor). Inoculated plants were grown for 21 days at 24°C in the greenhouse and then evaluated for SDS severity and expression of soybean defense genes. In both cultivars, plants treated with ethephon showed lower SDS foliar severity compared to the other treatments, whereas those treated with cobalt chloride or 1-MCP showed the same or higher SDS foliar severity compared to the water-treated control. Ethephon application resulted in activation of genes involved in ethylene biosynthesis, such as ethylene synthase (ACS) and ethylene oxidase (ACO), and genes involved in soybean defense response, such as pathogenesis-related protein (PR), basic peroxidase (IPER), chalcone synthase (CHS), and defense-associated transcription factors. Cobalt chloride and 1-MCP treatments had little or no effect on the expression of these genes. In addition, ethephon had a direct inhibitory effect on in-vitro growth of Fv on PDA media. Our results suggest that ethephon application inhibits SDS development directly by slowing Fv growth and/or by inducing soybean ethylene signaling and the expression of defense related genes.


Asunto(s)
Etilenos/biosíntesis , Fusarium/fisiología , Glycine max/metabolismo , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/efectos de los fármacos , Resistencia a la Enfermedad/genética , Fusarium/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Compuestos Organofosforados/farmacología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Transducción de Señal/efectos de los fármacos , Glycine max/efectos de los fármacos , Glycine max/genética , Esporas Fúngicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA