Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Hum Mol Genet ; 31(21): 3757-3768, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35451026

RESUMEN

Gout is of particularly high prevalence in the Maori and Pacific (Polynesian) populations of Aotearoa New Zealand (NZ). Here, we investigated the contribution of common population-specific copy number variation (CNV) to gout in the Aotearoa NZ Polynesian population. Microarray-generated genome-wide genotype data from Aotearoa NZ Polynesian individuals with (n = 1196) and without (n = 1249) gout were analyzed. Comparator population groups were 552 individuals of European ancestry and 1962 of Han Chinese ancestry. Levels of circulating major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) were measured by enzyme-linked immunosorbent assay. Fifty-four CNV regions (CNVRs) appearing in at least 10 individuals were detected, of which seven common (>2%) CNVRs were specific to or amplified in Polynesian people. A burden test of these seven revealed associations of insertion/deletion with gout (odds ratio (OR) 95% confidence interval [CI] = 1.80 [1.01; 3.22], P = 0.046). Individually testing of the seven CNVRs for association with gout revealed nominal association of CNVR1 with gout in Western Polynesian (Chr6: 31.36-31.45 Mb, OR = 1.72 [1.03; 2.92], P = 0.04), CNVR6 in the meta-analyzed Polynesian sample sets (Chr1: 196.75-196.92 Mb, OR = 1.86 [1.16; 3.00], P = 0.01) and CNVR9 in Western Polynesian (Chr1: 189.35-189.54 Mb, OR = 2.75 [1.15; 7.13], P = 0.03). Analysis of European gout genetic association data demonstrated a signal of association at the CNVR1 locus that was an expression quantitative trait locus for MICA. The most common CNVR (CNVR1) includes deletion of the MICA gene, encoding an immunomodulatory protein. Expression of MICA was reduced in the serum of individuals with the deletion. In summary, we provide evidence for the association of CNVR1 containing MICA with gout in Polynesian people, implicating class I MHC-mediated antigen presentation in gout.


Asunto(s)
Variaciones en el Número de Copia de ADN , Gota , Antígenos de Histocompatibilidad Clase I , Nativos de Hawái y Otras Islas del Pacífico , Humanos , Genotipo , Gota/etnología , Gota/genética , Antígenos de Histocompatibilidad Clase I/genética , Antígenos HLA , Nativos de Hawái y Otras Islas del Pacífico/genética
2.
J Am Soc Nephrol ; 34(3): 451-466, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36735516

RESUMEN

SIGNIFICANCE STATEMENT: Hyperinsulinemia induces hyperuricemia by activating net renal urate reabsorption in the renal proximal tubule. The basolateral reabsorptive urate transporter GLUT9a appears to be the dominant target for insulin. By contrast, IGF-1 infusion reduces serum urate (SU), through mechanisms unknown. Genetic variants of IGF1R associated with reduced SU have increased IGF-1R expression and interact with genes encoding the GLUT9 and ABCG2 urate transporters, in a sex-specific fashion, which controls the SU level. Activation of IGF-1/IGF-1R signaling in Xenopus oocytes modestly activates GLUT9a and inhibits insulin's stimulatory effect on the transporter, which also activates multiple secretory urate transporters-ABCG2, ABCC4, OAT1, and OAT3. The results collectively suggest that IGF-1 reduces SU by activating secretory urate transporters and inhibiting insulin's action on GLUT9a. BACKGROUND: Metabolic syndrome and hyperinsulinemia are associated with hyperuricemia. Insulin infusion in healthy volunteers elevates serum urate (SU) by activating net urate reabsorption in the renal proximal tubule, whereas IGF-1 infusion reduces SU by mechanisms unknown. Variation within the IGF1R gene also affects SU levels. METHODS: Colocalization analyses of a SU genome-wide association studies signal at IGF1R and expression quantitative trait loci signals in cis using COLOC2, RT-PCR, Western blotting, and urate transport assays in transfected HEK 293T cells and in Xenopus laevis oocytes. RESULTS: Genetic association at IGF1R with SU is stronger in women and is mediated by control of IGF1R expression. Inheritance of the urate-lowering homozygous genotype at the SLC2A9 locus is associated with a differential effect of IGF1R genotype between men and women. IGF-1, through IGF-1R, stimulated urate uptake in human renal proximal tubule epithelial cells and transfected HEK 293T cells, through activation of IRS1, PI3/Akt, MEK/ERK, and p38 MAPK; urate uptake was inhibited in the presence of uricosuric drugs, specific inhibitors of protein tyrosine kinase, PI3 kinase (PI3K), ERK, and p38 MAPK. In X. laevis oocytes expressing ten individual urate transporters, IGF-1 through endogenous IGF-1R stimulated urate transport mediated by GLUT9, OAT1, OAT3, ABCG2, and ABCC4 and inhibited insulin's stimulatory action on GLUT9a and OAT3. IGF-1 significantly activated Akt and ERK. Specific inhibitors of PI3K, ERK, and PKC significantly affected IGF-1 stimulation of urate transport in oocytes. CONCLUSIONS: The combined results of infusion, genetics, and transport experiments suggest that IGF-1 reduces SU by activating urate secretory transporters and inhibiting insulin's action.


Asunto(s)
Hiperinsulinismo , Hiperuricemia , Insulinas , Masculino , Humanos , Femenino , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ácido Úrico/metabolismo , Hiperuricemia/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Estudio de Asociación del Genoma Completo , Homeostasis , Fosfatidilinositol 3-Quinasas/genética , Insulinas/genética , Insulinas/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo
3.
Osteoarthritis Cartilage ; 31(8): 1022-1034, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37105395

RESUMEN

OBJECTIVE: Basic calcium phosphate (BCP) crystals can activate the NLRP3 inflammasome and are potentially involved in the pathogenesis of osteoarthritis (OA). In order to elucidate relevant inflammatory mechanisms in OA, we used a functional genomics approach to assess genetic variation influencing BCP crystal-induced cytokine production. METHOD: Peripheral blood mononuclear cells (PBMCs) were isolated from healthy volunteers who were previously genotyped and stimulated with BCP crystals and/or lipopolysaccharide (LPS) after which cytokines release was assessed. Cytokine quantitative trait locus (cQTL) mapping was performed. For in vitro validation of the cQTL located in anoctamin 3 (ANO3), PBMCs were incubated with Tamoxifen and Benzbromarone prior to stimulation. Additionally, we performed co-localisation analysis of our top cQTLs with the most recent OA meta-analysis of genome-wide association studies (GWAS). RESULTS: We observed that BCP crystals and LPS synergistically induce IL-1ß in human PBMCs. cQTL analysis revealed several suggestive loci influencing cytokine release upon stimulation, among which are quantitative trait locus annotated to ANO3 and GLIS3. As functional validation, anoctamin inhibitors reduced IL-1ß release in PBMCs after stimulation. Co-localisation analysis showed that the GLIS3 locus was shared between LPS/BCP crystal-induced IL-1ß and genetic association with Knee OA. CONCLUSIONS: We identified and functionally validated a new locus, ANO3, associated with LPS/BCP crystal-induced inflammation in PBMCs. Moreover, the cQTL in the GLIS3 locus co-localises with the previously found locus associated with Knee OA, suggesting that this Knee OA locus might be explained through an inflammatory mechanism. These results form a basis for further exploration of inflammatory mechanisms in OA.


Asunto(s)
Osteoartritis de la Rodilla , Sitios de Carácter Cuantitativo , Humanos , Receptor Toll-Like 4/genética , Leucocitos Mononucleares , Estudio de Asociación del Genoma Completo , Lipopolisacáridos , Fosfatos de Calcio/farmacología , Inflamación/genética , Genómica , Anoctaminas
4.
Mol Biol Evol ; 37(7): 1964-1978, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32134461

RESUMEN

Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.


Asunto(s)
Adaptación Fisiológica , Abejas/genética , Genoma de los Insectos , Animales , Abejas/metabolismo , Femenino , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Insectos/metabolismo , Ovario/metabolismo , Receptores Notch/metabolismo
6.
J Exp Bot ; 68(15): 4205-4217, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28922756

RESUMEN

The JASON (JAS) protein plays an important role in maintaining an organelle band across the equator of male meiotic cells during the second division, with its loss leading to unreduced pollen in Arabidopsis. In roots cells, JAS localizes to the Golgi, tonoplast and plasma membrane. Here we explore the mechanism underlying the localization of JAS. Overall, our data show that leaky ribosom scanning and alternative translation initiation sites (TISs) likely leads to the formation of two forms of JAS: a long version with an N-terminal Golgi localization signal and a short version with a different N-terminal signal targeting the protein to the plasma membrane. The ratio of the long and short forms of JAS is developmentally regulated, with both being produced in roots but the short form being predominant and functional during meiosis. This regulation of TISs in meiocytes ensures that the short version of JAS is formed during meiosis to ensure separation of chromosome groups and the production of reduced pollen. We hypothesize that increased occurrence of unreduced pollen under stress conditions may be a consequence of altered usage of JAS TISs during stress.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Raíces de Plantas/metabolismo , Polen/metabolismo , Transactivadores/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Meiosis , Transactivadores/metabolismo
7.
Dev Biol ; 377(1): 262-74, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23416037

RESUMEN

The pea aphid (Acyrthosiphon pisum) can reproduce either sexually or asexually (parthenogenetically), giving rise, in each case, to almost identical adults. These two modes of reproduction are accompanied by differences in ovarian morphology and the developmental environment of the offspring, with sexual forms producing eggs that are laid, whereas asexual development occurs within the mother. Here we examine the effect each mode of reproduction has on the expression of key maternal and axis patterning genes; orthodenticle (otd), hunchback (hb), caudal (cad) and nanos (nos). We show that three of these genes (Ap-hb, Ap-otd and Ap-cad) are expressed differently between the sexually and asexually produced oocytes and embryos of the pea aphid. We also show, using immunohistochemistry and cytoskeletal inhibitors, that Ap-hb RNA is localized differently between sexually and asexually produced oocytes, and that this is likely due to differences in the 3' untranslated regions of the RNA. Furthermore, Ap-hb and Ap-otd have extensive expression domains in early sexually produced embryos, but are not expressed at equivalent stages in asexually produced embryos. These differences in expression likely correspond with substantial changes in the gene regulatory networks controlling early development in the pea aphid. These data imply that in the evolution of parthenogenesis a new program has evolved to control the development of asexually produced embryos, whilst retaining the existing, sexual, developmental program. The patterns of modification of these developmental processes mirror the changes that we see in developmental processes between species, in that early acting pathways in development are less constrained, and evolve faster, than later ones. We suggest that the evolution of the novel asexual development pathway in aphids is not a simple modification of an ancestral system, but the evolution of two very different developmental mechanisms occurring within a single species.


Asunto(s)
Áfidos/embriología , Áfidos/genética , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos/genética , Pisum sativum/parasitología , Citoesqueleto de Actina/metabolismo , Animales , Áfidos/citología , Secuencia de Bases , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Femenino , Genes de Insecto/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Oocitos/citología , Oocitos/metabolismo , Ovario/citología , Ovario/metabolismo , Oviparidad/genética , ARN/genética , ARN/metabolismo , Transporte de ARN/genética , Reproducción Asexuada/genética , Viviparidad de Animales no Mamíferos/genética , Cigoto/citología , Cigoto/metabolismo
8.
Arthritis Res Ther ; 26(1): 45, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331848

RESUMEN

BACKGROUND: Alcohol consumption is a risk factor for hyperuricaemia and gout. Multiple single-nucleotide polymorphisms (SNPs) have been identified as associated with both alcohol consumption and serum urate or gout in separate genome-wide association studies (GWAS). This study aimed to identify and characterise interactions between these shared signals of genetic association and alcohol consumption for serum urate level, hyperuricaemia, and gout. METHODS: This research was conducted using the UK Biobank resource. The association of alcohol consumption with serum urate and gout was tested among 458,405 European participants. Candidate SNPs were identified by comparing serum urate, gout, and alcohol consumption GWAS for shared signals of association. Multivariable-adjusted linear and logistic regression analyses were conducted with the inclusion of interaction terms to identify SNP-alcohol consumption interactions for association with serum urate level, hyperuricaemia, and gout. The nature of these interactions was characterised using genotype-stratified association analyses. RESULTS: Alcohol consumption was associated with elevated serum urate and gout. For serum urate level, non-additive interactions were identified between alcohol consumption and rs1229984 at the ADH1B locus (P = 3.0 × 10-44) and rs6460047 at the MLXIPL locus (P = 1.4 × 10-4). ADH1B also demonstrated interaction with alcohol consumption for hyperuricaemia (P = 7.9 × 10-13) and gout (P = 8.2 × 10-9). Beer intake had the most significant interaction with ADH1B for association with serum urate and gout among men, while wine intake had the most significant interaction among women. In the genotype-stratified association analyses, ADH1B and MLXIPL were associated with serum urate level and ADH1B was associated with hyperuricaemia and gout among consumers of alcohol but not non-consumers. CONCLUSIONS: In this large study of European participants, novel interactions with alcohol consumption were identified at ADH1B and MLXIPL for association with serum urate level and at ADH1B for association with hyperuricaemia and gout. The association of ADH1B with serum urate and gout may occur through the modulation of alcohol metabolism rate among consumers of alcohol.


Asunto(s)
Gota , Hiperuricemia , Femenino , Humanos , Masculino , Alcohol Deshidrogenasa/genética , Consumo de Bebidas Alcohólicas/genética , Etnicidad , Estudio de Asociación del Genoma Completo , Gota/genética , Hiperuricemia/genética , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Ácido Úrico
9.
Arthritis Rheumatol ; 75(5): 816-825, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36281732

RESUMEN

OBJECTIVE: To determine whether a gout polygenic risk score (PRS) is associated with age at gout onset and tophaceous disease in European, East Polynesian, and West Polynesian men and women with gout. METHODS: A 19-variant gout PRS was produced in 7 European gout cohorts (N = 4,016), 2 East Polynesian gout cohorts (N = 682), and 1 West Polynesian gout cohort (N = 490). Sex-stratified regression models were used to estimate the relationship between the PRS and age at gout onset and tophaceous disease. RESULTS: The PRS was associated with earlier age at gout onset in men (ß = -3.61 in years per unit PRS [95% confidence interval (95% CI) -4.32, -2.90] in European men; ß = -6.35 [95% CI -8.91, -3.80] in East Polynesian men; ß = -3.51 [95% CI -5.46, -1.57] in West Polynesian men) but not in women (ß = 0.07 [95% CI -2.32, 2.45] in European women; ß = 0.20 [95% CI -7.21, 7.62] in East Polynesian women; ß -3.33 [95% CI -9.28, 2.62] in West Polynesian women). The PRS showed a positive association with tophaceous disease in men (odds ratio [OR] for the association 1.15 [95% CI 1.00, 1.31] in European men; OR 2.60 [95% CI 1.66, 4.06] in East Polynesian men; OR 1.53 [95% CI 1.07, 2.19] in West Polynesian men) but not in women (OR for the association 0.68 [95% CI 0.42, 1.10] in European women; OR 1.45 [95% CI 0.39, 5.36] in East Polynesian women). The PRS association with age at gout onset was robust to the removal of ABCG2 variants from the PRS in European and East Polynesian men (ß = -2.42 [95% CI -3.37, -1.46] and ß = -6.80 [95% CI -10.06, -3.55], respectively) but not in West Polynesian men (ß = -1.79 [95% CI -4.74, 1.16]). CONCLUSION: Genetic risk variants for gout also harbor risk for earlier age at gout onset and tophaceous disease in European and Polynesian men. Our findings suggest that earlier gout onset involves the accumulation of gout risk alleles in men but perhaps not in women, and that this genetic risk is shared across multiple ancestral groups.


Asunto(s)
Gota , Pueblos Isleños del Pacífico , Femenino , Humanos , Masculino , Predisposición Genética a la Enfermedad , Gota/genética , Factores de Riesgo , Pueblo Europeo
10.
G3 (Bethesda) ; 12(9)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35876900

RESUMEN

Hyperuricemia (serum urate >6.8 mg/dl) is associated with several cardiometabolic and renal diseases, such as gout and chronic kidney disease. Previous studies have examined the shared genetic basis of chronic kidney disease and hyperuricemia in humans either using single-variant tests or estimating whole-genome genetic correlations between the traits. Individual variants typically explain a small fraction of the genetic correlation between traits, thus the ability to map pleiotropic loci is lacking power for available sample sizes. Alternatively, whole-genome estimates of genetic correlation indicate a moderate correlation between these traits. While useful to explain the comorbidity of these traits, whole-genome genetic correlation estimates do not shed light on what regions may be implicated in the shared genetic basis of traits. Therefore, to fill the gap between these two approaches, we used local Bayesian multitrait models to estimate the genetic covariance between a marker for chronic kidney disease (estimated glomerular filtration rate) and serum urate in specific genomic regions. We identified 134 overlapping linkage disequilibrium windows with statistically significant covariance estimates, 49 of which had positive directionalities, and 85 negative directionalities, the latter being consistent with that of the overall genetic covariance. The 134 significant windows condensed to 64 genetically distinct shared loci which validate 17 previously identified shared loci with consistent directionality and revealed 22 novel pleiotropic genes. Finally, to examine potential biological mechanisms for these shared loci, we have identified a subset of the genomic windows that are associated with gene expression using colocalization analyses. The regions identified by our local Bayesian multitrait model approach may help explain the association between chronic kidney disease and hyperuricemia.


Asunto(s)
Hiperuricemia , Insuficiencia Renal Crónica , Teorema de Bayes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Hiperuricemia/genética , Riñón , Insuficiencia Renal Crónica/genética , Ácido Úrico
11.
Best Pract Res Clin Rheumatol ; 35(4): 101721, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34732286

RESUMEN

This review focuses on the post-genome-wide association study (GWAS) era in gout, i.e., the translation of GWAS genetic association signals into biologically informative knowledge. Analytical and experimental follow-up of individual loci, based on the identification of causal genetic variants, reveals molecular pathogenic pathways. We summarize in detail the largest GWAS in urate to date, then we review follow-up studies and molecular insights from ABCG2, HNF4A, PDZK1, MAF, GCKR, ALDH2, ALDH16A1, SLC22A12, SLC2A9, ABCC4, and SLC22A13, including the role of insulin signaling. One common factor in these pathways is the importance of transcriptional control, including the HNF4α transcription factor. The new molecular knowledge reveals new targets for intervention to manage urate levels and prevent gout.


Asunto(s)
Gota , Transportadores de Anión Orgánico , Aldehído Deshidrogenasa Mitocondrial , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Gota/genética , Humanos , Transportadores de Anión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/genética , Ácido Úrico
12.
Front Physiol ; 12: 713710, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408667

RESUMEN

Insulin and hyperinsulinemia reduce renal fractional excretion of urate (FeU) and play a key role in the genesis of hyperuricemia and gout, via uncharacterized mechanisms. To explore this association further we studied the effects of genetic variation in insulin-associated pathways on serum urate (SU) levels and the physiological effects of insulin on urate transporters. We found that urate-associated variants in the human insulin (INS), insulin receptor (INSR), and insulin receptor substrate-1 (IRS1) loci associate with the expression of the insulin-like growth factor 2, IRS1, INSR, and ZNF358 genes; additionally, we found genetic interaction between SLC2A9 and the three loci, most evident in women. We also found that insulin stimulates the expression of GLUT9 and increases [14C]-urate uptake in human proximal tubular cells (PTC-05) and HEK293T cells, transport activity that was effectively abrogated by uricosurics or inhibitors of protein tyrosine kinase (PTK), PI3 kinase, MEK/ERK, or p38 MAPK. Heterologous expression of individual urate transporters in Xenopus oocytes revealed that the [14C]-urate transport activities of GLUT9a, GLUT9b, OAT10, OAT3, OAT1, NPT1 and ABCG2 are directly activated by insulin signaling, through PI3 kinase (PI3K)/Akt, MEK/ERK and/or p38 MAPK. Given that the high-capacity urate transporter GLUT9a is the exclusive basolateral exit pathway for reabsorbed urate from the renal proximal tubule into the blood, that insulin stimulates both GLUT9 expression and urate transport activity more than other urate transporters, and that SLC2A9 shows genetic interaction with urate-associated insulin-signaling loci, we postulate that the anti-uricosuric effect of insulin is primarily due to the enhanced expression and activation of GLUT9.

13.
Semin Nephrol ; 40(6): 586-599, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33678313

RESUMEN

Increased urate levels and gout correlate with chronic kidney disease with consensus that the primary driver of this relationship is reduced kidney function. However, a comparison of results of genome-wide association studies in serum urate levels and kidney function indicate a more complex situation. Approximately 20% of loci are shared-comprised of those in which the urate-raising allele associates with reduced kidney function, the vice versa situation, and those in which the signals/alleles are different. Although there is very little known regarding the molecular basis of the shared genetic relationship, it is clear that there is no major role for urate transporters and associated transportasome machinery. Some loci, however, do provide clues. The ATXN2 locus, with a shared signal, is one of only a small number of master regulators of expression by chromatin interaction, regulating expression of genes relevant for cholesterol and blood pressure. This suggests a role for systemic metabolic alteration. At HNF4A there is genetic heterogeneity with different genetic variants conferring risk to hyperuricemia and chronic kidney disease, suggesting different pathways. Interestingly, the shared loci congregate in the olfactory receptor pathway. The genome-wide association studies have generated a range of experimentally testable hypotheses that should provide insights into the shared pathogenesis of hyperuricemia/gout and chronic kidney disease.


Asunto(s)
Gota , Hiperuricemia , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Gota/genética , Humanos , Hiperuricemia/genética , Riñón , Polimorfismo de Nucleótido Simple
14.
Nutrients ; 7(3): 1787-97, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25768950

RESUMEN

Many insects are capable of remarkable changes in biology and form in response to their environment or diet. The most extreme example of these are polyphenisms, which are when two or more different phenotypes are produced from a single genotype in response to the environment. Polyphenisms provide a fascinating opportunity to study how the environment affects an animal's genome, and how this produces changes in form. Here we review the current state of knowledge of the molecular basis of polyphenisms and what can be learnt from them to understand how nutrition may influence our own genomes.


Asunto(s)
Dieta , Epigénesis Genética , Epigenómica , Genotipo , Insectos/genética , Estado Nutricional/genética , Fenotipo , Animales , Ambiente , Pleiotropía Genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA