Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
2.
Cancer Cell ; 9(6): 425-34, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16766262

RESUMEN

Alterations in cellular metabolism are among the most consistent hallmarks of cancer. Herein we have investigated the relationship between increased aerobic lactate production and mitochondrial physiology in tumor cells. To diminish the ability of malignant cells to metabolize pyruvate to lactate, lactate dehydrogenase A (LDH-A) levels were knocked down by means of LDH-A short hairpin RNAs. Reduction in LDH-A activity resulted in stimulation of mitochondrial respiration and decrease of mitochondrial membrane potential. It also compromised the ability of these tumor cells to proliferate under hypoxia. The tumorigenicity of the LDH-A-deficient cells was severely diminished, and this phenotype was reversed by complementation with the human ortholog LDH-A protein. These results demonstrate that LDH-A plays a key role in tumor maintenance.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , L-Lactato Deshidrogenasa/fisiología , Ácido Láctico/biosíntesis , Neoplasias Mamarias Experimentales/metabolismo , Mitocondrias/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/patología , Femenino , Glucosa/metabolismo , Glucólisis , Humanos , Indoles/farmacología , Isoenzimas/biosíntesis , Isoenzimas/genética , Isoenzimas/fisiología , L-Lactato Deshidrogenasa/biosíntesis , L-Lactato Deshidrogenasa/genética , Lactato Deshidrogenasa 5 , Ácido Láctico/antagonistas & inhibidores , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/patología , Potenciales de la Membrana , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/fisiología , Trasplante de Neoplasias , Fosforilación Oxidativa , Consumo de Oxígeno , Compuestos de Piridinio/farmacología
3.
Cancer Cell ; 2(1): 29-42, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12150823

RESUMEN

Tumorigenesis results from events that impinge on a variety of collaborating metabolic pathways. To assess their role in this process, we utilized a cell-based assay to perform a high-throughput, chemical library screen. In so doing, we identified F16, a small molecule that selectively inhibits proliferation of mammary epithelial, neu-overexpressing cells, as well as a variety of mouse mammary tumor and human breast cancer cell lines. F16 belongs to a group of structurally similar molecules with a delocalized positive charge. The compound is accumulated in mitochondria of responsive cells, driven by the membrane potential, and it compromises their functional integrity. Mitochondrial hyperpolarization is a shared feature of many tumor cell lines, explaining the broad action spectrum of this novel delocalized lipophilic cation.


Asunto(s)
Neoplasias de la Mama/metabolismo , Células Epiteliales/metabolismo , Genes erbB-2/genética , Inhibidores de Crecimiento/farmacología , Indoles/metabolismo , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Mitocondrias/metabolismo , Compuestos de Piridinio/metabolismo , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cationes/farmacología , Cationes/toxicidad , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular Transformada , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Inhibidores de Crecimiento/química , Inhibidores de Crecimiento/toxicidad , Humanos , Indoles/farmacología , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Potenciales de la Membrana , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Mitocondrias/ultraestructura , Compuestos de Piridinio/farmacología , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas
5.
PLoS Genet ; 5(6): e1000527, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19543366

RESUMEN

Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the cellular components required for damage survival, their interrelationship, and contextual importance has been lacking. Further, by comparing data from different model organisms, identification of conserved and presumably core survival components should be forthcoming. We identified 307 genes, representing 13 signaling, metabolic, or enzymatic pathways, affecting cellular survival of MMS-induced damage. As expected, the majority of these pathways are involved in DNA repair; however, several pathways with more diverse biological functions were also identified, including the TOR pathway, transcription, translation, proteasome, glutathione synthesis, ATP synthesis, and Notch signaling, and these were equally important in damage survival. Comparison with genomic screen data from Saccharomyces cerevisiae revealed no overlap enrichment of individual genes between the species, but a conservation of the pathways. To demonstrate the functional conservation of pathways, five were tested in Drosophila and mouse cells, with each pathway responding to alkylation damage in both species. Using the protein interactome, a significant level of connectivity was observed between Drosophila MMS survival proteins, suggesting a higher order relationship. This connectivity was dramatically improved by incorporating the components of the 13 identified pathways within the network. Grouping proteins into "pathway nodes" qualitatively improved the interactome organization, revealing a highly organized "MMS survival network." We conclude that identification of pathways can facilitate comparative biology analysis when direct gene/orthologue comparisons fail. A biologically intuitive, highly interconnected MMS survival network was revealed after we incorporated pathway data in our interactome analysis.


Asunto(s)
Drosophila/fisiología , Redes Reguladoras de Genes , Interferencia de ARN , Transducción de Señal , Animales , Línea Celular , Células Cultivadas , Daño del ADN/efectos de los fármacos , Drosophila/efectos de los fármacos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genoma de los Insectos/efectos de los fármacos , Metilmetanosulfonato/farmacología , Ratones , Ratones Endogámicos C57BL , Mutágenos/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Hum Mol Genet ; 18(13): 2472-82, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19383632

RESUMEN

Proper limb development requires concerted communication between cells within the developing limb bud. Several molecules have been identified which contribute to the formation of a circuitry loop consisting in large part of secreted proteins. The intracellular actin nucleator, Formin 1 (Fmn1), has previously been implicated in limb development, but questions remain after the identification of a Gremlin transcriptional enhancer within the 3' end of the Fmn 1 locus. To resolve this issue, a knockout mouse devoid of Fmn1 protein was created and characterized. The mice exhibit a reduction of digit number to four, a deformed posterior metatarsal, phalangeal soft tissue fusion as well as the absence of a fibula to 100% penetrance in the FVB genetic background. Importantly, this mutant allele does not genetically disrupt the characterized Gremlin enhancer, and indeed Gremlin RNA expression is upregulated at the 35 somite stage of development. Our data reveal increased Bone Morphogenetic Protein (Bmp) activity in mice which carry a disruption in Fmn1, as evidenced by upregulation of Msx1 and a decrease in Fgf4 within the apical ectodermal ridge. Additionally, these studies show enhanced activity downstream of the Bmp receptor in cells where Fmn1 is perturbed, suggesting a role for Fmn1 in repression of Bmp signaling.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Fetales/genética , Silenciador del Gen , Deformidades Congénitas de las Extremidades/metabolismo , Proteínas de Microfilamentos/genética , Proteínas Nucleares/genética , Transducción de Señal , Regulación hacia Arriba , Animales , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Modelos Animales de Enfermedad , Extremidades/embriología , Proteínas Fetales/metabolismo , Forminas , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Deformidades Congénitas de las Extremidades/embriología , Deformidades Congénitas de las Extremidades/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo
7.
Nat Cell Biol ; 4(12): 921-8, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12447394

RESUMEN

Successful reproduction in mammals requires a competent egg, which is formed during meiosis through two assymetrical cell divisions. Here, we show that a recently identified formin homology (FH) gene, formin-2 (Fmn2), is a maternal-effect gene that is expressed in oocytes and is required for progression through metaphase of meiosis I. Fmn2(-/-) oocytes cannot correctly position the metaphase spindle during meiosis I and form the first polar body. We demonstrate that Fmn2 is required for microtubule-independent chromatin positioning during metaphase I. Fertilization of Fmn2(-/-) oocytes results in polyploid embryo formation, recurrent pregnancy loss and sub-fertility in Fmn2(-/-) females. Injection of Fmn2 mRNA into Fmn2-deficient oocytes rescues the metaphase I block. Given that errors in meiotic maturation result in severe birth defects and are the most common cause of chromosomal aneuploidy and pregnancy loss in humans, studies of Fmn2 may provide a better understanding of infertility and birth defects.


Asunto(s)
Meiosis/genética , Proteínas del Tejido Nervioso/genética , Oocitos/fisiología , Animales , Diferenciación Celular/genética , Femenino , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Meiosis/fisiología , Ratones , Proteínas del Tejido Nervioso/fisiología , Oocitos/citología , Poliploidía
8.
J Immunol ; 182(1): 347-60, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19109166

RESUMEN

The RecQ family helicase BLM is critically involved in the maintenance of genomic stability, and BLM mutation causes the heritable disorder Bloom's syndrome. Affected individuals suffer from a predisposition to a multitude of cancer types and an ill-defined immunodeficiency involving low serum Ab titers. To investigate its role in B cell biology, we inactivated murine Blm specifically in B lymphocytes in vivo. Numbers of developing B lymphoid cells in the bone marrow and mature B cells in the periphery were drastically reduced upon Blm inactivation. Of the major peripheral B cell subsets, B1a cells were most prominently affected. In the sera of Blm-deficient naive mice, concentrations of all Ig isotypes were low, particularly IgG3. Specific IgG Ab responses upon immunization were poor and mutant B cells exhibited a generally reduced Ab class switch capacity in vitro. We did not find evidence for a crucial role of Blm in the mechanism of class switch recombination. However, a modest shift toward microhomology-mediated switch junction formation was observed in Blm-deficient B cells. Finally, a cohort of p53-deficient, conditional Blm knockout mice revealed an increased propensity for B cell lymphoma development. Impaired cell cycle progression and survival as well as high rates of chromosomal structural abnormalities in mutant B cell blasts were identified as the basis for the observed effects. Collectively, our data highlight the importance of BLM-dependent genome surveillance for B cell immunity by ensuring proper development and function of the various B cell subsets while counteracting lymphomagenesis.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/patología , Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Inestabilidad Genómica/inmunología , RecQ Helicasas/deficiencia , RecQ Helicasas/genética , Animales , Apoptosis/genética , Apoptosis/inmunología , Subgrupos de Linfocitos B/enzimología , Síndrome de Bloom/enzimología , Síndrome de Bloom/inmunología , Síndrome de Bloom/patología , Ciclo Celular/genética , Ciclo Celular/inmunología , Diferenciación Celular/genética , Linaje de la Célula/genética , Replicación del ADN/genética , Replicación del ADN/inmunología , Isotipos de Inmunoglobulinas/biosíntesis , Isotipos de Inmunoglobulinas/genética , Isotipos de Inmunoglobulinas/metabolismo , Región de Cambio de la Inmunoglobulina/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Neoplasias/enzimología , Neoplasias/inmunología , Neoplasias/patología , RecQ Helicasas/fisiología , Recombinación Genética/inmunología
9.
Mol Cell Biol ; 27(5): 1947-59, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17210642

RESUMEN

Bloom's syndrome is a genetic disorder characterized by increased incidence of cancer and an immunodeficiency of unknown origin. The BLM gene mutated in Bloom's syndrome encodes a DNA helicase involved in the maintenance of genomic integrity. To explore the role of BLM in the immune system, we ablated murine Blm in the T-cell lineage. In the absence of Blm, thymocytes were severely reduced in numbers and displayed a developmental block at the beta-selection checkpoint that was partially p53 dependent. Blm-deficient thymocytes rearranged their T-cell receptor (TCR) beta genes normally yet failed to survive and proliferate in response to pre-TCR signaling. Furthermore, peripheral T cells were reduced in numbers, manifested defective homeostatic and TCR-induced proliferation, and produced extensive chromosomal damage. Finally, CD4(+) and CD8(+) T-cell responses were impaired upon antigen challenge. Thus, by ensuring genomic stability, Blm serves a vital role for development, maintenance, and function of T lymphocytes, suggesting a basis for the immune deficiency in Bloom's syndrome.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Linaje de la Célula , ADN Helicasas/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Linfocitos T/metabolismo , Adenosina Trifosfatasas/genética , Alelos , Animales , Células Cultivadas , Aberraciones Cromosómicas , ADN Helicasas/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , RecQ Helicasas , Linfocitos T/inmunología , Timo/citología
10.
Mol Cell Biol ; 26(17): 6713-26, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16914751

RESUMEN

Bloom's syndrome (BS) is a genetic disorder characterized cellularly by increases in sister chromatid exchanges (SCEs) and numbers of micronuclei. BS is caused by mutation in the BLM DNA helicase gene and involves a greatly enhanced risk of developing the range of malignancies seen in the general population. With a mouse model for the disease, we set out to determine the relationship between genomic instability and neoplasia. We used a novel two-step analysis to investigate a panel of eight cell lines developed from mammary tumors that appeared in Blm conditional knockout mice. First, the panel of cell lines was examined for instability. High numbers of SCEs were uniformly seen in members of the panel, and several lines produced chromosomal instability (CIN) manifested by high numbers of chromosomal structural aberrations (CAs) and chromosome missegregation events. Second, to see if Blm mutation was responsible for the CIN, time-dependent analysis was conducted on a tumor line harboring a functional floxed Blm allele. The floxed allele was deleted in vitro, and mutant as well as control subclones were cultured for 100 passages. By passage 100, six of nine mutant subclones had acquired high CIN. Nine mutant subclones produced 50-fold more CAs than did nine control subclones. Finally, chromosome loss preceded the appearance of CIN, suggesting that this loss provides a potential mechanism for the induction of instability in mutant subclones. Such aneuploidy or CIN is a universal feature of neoplasia but has an uncertain function in oncogenesis. Our results show that Blm gene mutation produces this instability, strengthening a role for CIN in the development of human cancer.


Asunto(s)
Adenosina Trifosfatasas/genética , Inestabilidad Cromosómica/genética , ADN Helicasas/genética , Eliminación de Secuencia/genética , Alelos , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Células Cultivadas , Cromosomas de los Mamíferos/genética , Células Clonales , ADN/genética , Embrión de Mamíferos/citología , Exones/genética , Humanos , Integrasas/metabolismo , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales , Ratones , Ratones Noqueados , Células 3T3 NIH , Ploidias , RecQ Helicasas , Células Madre/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA