Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Nephrol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836367

RESUMEN

It was in the philosopher's stone quest that the alchemist Hennig Brand isolated chemiluminescent white phosphorus (P), Greek for "light bearer", from urine in 1669. By 1771 phosphorus was isolated from bone, and in 1777 it was identified by Antoine Lavoisier as a highly reactive element that exists predominantly in nature as ionic phosphate (PO43-) and in solution as phosphoric acid (H3PO4). Early 20th century studies revealed phosphorylated biomolecules as essential components of replicative nuclear material (RNA, DNA), a metabolic source of energy (ATP), and structural components of cellular membrane (phospholipid bilayer). Life on earth began as organophosphates of a self-replicating RNA that evolved into DNA and acquired a membrane to form the original eukaryotes, which eventually joined to form multicellular organisms of the deep sea. Tissue mineralization during transition from the ocean to land generated the endoskeleton, the largest phosphorus stores of evolving vertebrates. Subsequent studies of phosphate homeostasis elucidated its complex regulatory system based on the interaction of the kidney, small intestine, bone, and parathyroid glands, orchestrated by hormones (PTH, calcitriol, FGF23, Klotho), and carried out by phosphate-specific transporters (SLC34 and SLC20 families) all to ensure adequate phosphate for survival and health. Paradoxically, kidney replacement therapy in the 1970s, by prolonging the lives of millions of individuals with kidney failure, revealed the hazards of phosphorus excess. "Phosphorus the light bearer" has become in the eyes of many nephrologists "Phosphorus the cardiovascular toxin".

2.
Am J Kidney Dis ; 82(5): 617-634, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37565942

RESUMEN

Kidney stone disease, also known as nephrolithiasis or urolithiasis, is a disorder in which urinary solutes precipitate to form aggregates of crystalline material in the urinary space. The incidence of nephrolithiasis has been increasing, and the demographics have been evolving. Once viewed as a limited disease with intermittent exacerbations that are simply managed by urologists, nephrolithiasis is now recognized as a complex condition requiring thorough evaluation and multifaceted care. Kidney stones are frequently manifestations of underlying systemic medical conditions such as the metabolic syndrome, genetic disorders, or endocrinopathies. Analysis of urine chemistries and stone composition provide a window into pathogenesis and direct ancillary studies to uncover underlying diseases. These studies allow providers to devise individualized strategies to limit future stone events. Given its complexity, kidney stone disease is best addressed by a team led by nephrologists and urologists with input from multiple other health professionals including dietitians, endocrinologists, interventional radiologists, and endocrine surgeons. In this installment of AJKD's Core Curriculum in Nephrology, we provide a case-based overview of nephrolithiasis, divided by the individual stone types. The reader will gain a pragmatic understanding of the pathophysiology, evaluation, and management of this condition.

3.
J Am Soc Nephrol ; 32(1): 86-97, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33122286

RESUMEN

BACKGROUND: Cultured cell lines are widely used for research in the physiology, pathophysiology, toxicology, and pharmacology of the renal proximal tubule. The lines that are most appropriate for a given use depend upon the genes expressed. New tools for transcriptomic profiling using RNA sequencing (RNA-Seq) make it possible to catalog expressed genes in each cell line. METHODS: Fourteen different proximal tubule cell lines, representing six species, were grown on permeable supports under conditions specific for the respective lines. RNA-Seq followed standard procedures. RESULTS: Transcripts expressed in cell lines variably matched transcripts selectively expressed in native proximal tubule. Opossum kidney (OK) cells displayed the highest percentage match (45% of proximal marker genes [TPM threshold =15]), with pig kidney cells (LLC-PK1) close behind (39%). Lower-percentage matches were seen for various human lines, including HK-2 (26%), and lines from rodent kidneys, such as NRK-52E (23%). Nominally, identical OK cells from different sources differed substantially in expression of proximal tubule markers. Mapping cell line transcriptomes to gene sets for various proximal tubule functions (sodium and water transport, protein transport, metabolic functions, endocrine functions) showed that different lines may be optimal for experimentally modeling each function. An online resource (https://esbl.nhlbi.nih.gov/JBrowse/KCT/) has been created to interrogate cell line transcriptome data. Proteomic analysis of NRK-52E cells confirmed low expression of many proximal tubule marker proteins. CONCLUSIONS: No cell line fully matched the transcriptome of native proximal tubule cells. However, some of the lines tested are suitable for the study of particular metabolic and transport processes seen in the proximal tubule.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Túbulos Renales Proximales/metabolismo , Transcriptoma , Animales , Transporte Biológico , Línea Celular , Cromatografía Liquida , Perfilación de la Expresión Génica , Humanos , Internet , Ratones , Zarigüeyas , Proteómica , RNA-Seq , Ratas , Análisis de Secuencia de ARN , Especificidad de la Especie , Porcinos , Espectrometría de Masas en Tándem
4.
Am J Physiol Renal Physiol ; 320(2): F203-F211, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33308018

RESUMEN

Chronic kidney disease mineral bone disorder (CKD-MBD) is a virtually universal complication of kidney diseases, starting early in the course of disease and resulting in devastating clinical consequences ranging from bone fragility to accelerated atherosclerosis and early cardiovascular death. Guidelines for therapeutic goals for CKD-MBD have been published, and achievement of these guidelines is associated with improved survival. However, the incomplete understanding of CKD-MBD and the individual variability in the manifestations of CKD-MBD have made it difficult to achieve these guidelines. We hypothesized that the progression of MBD through all stages of CKD, including end-stage kidney disease, could be represented by a quantitative systems pharmacology/systems biology (QSP) model. To address this hypothesis, we constructed a QSP model of CKD-MBD, building on an open-source model of calcium and phosphorus metabolism. Specifically, we estimated and validated the model using data from 5,496 patients with CKD enrolled in the Chronic Renal Insufficiency Cohort study. Our model accurately predicted changes in markers of mineral metabolism related to progressing CKD. We demonstrated that the incorporation of fibroblast growth factor 23 and the soft tissue compartment is essential for accurate modeling of the changes in calcium, phosphorus, intact parathyroid hormone, and calcitriol in CKD-MBD. We conclude that our systems biology model accurately represents CKD-MBD disease progression and can be used as a test bench for improving therapeutic interventions.


Asunto(s)
Enfermedades Óseas Metabólicas/metabolismo , Calcio/metabolismo , Aprendizaje Automático , Modelos Biológicos , Fosfatos/metabolismo , Insuficiencia Renal Crónica/fisiopatología , Enfermedades Óseas Metabólicas/etiología , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Hormona Paratiroidea/metabolismo , Insuficiencia Renal Crónica/complicaciones
5.
Am J Physiol Renal Physiol ; 318(3): F804-F808, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31984791

RESUMEN

Na+/H+ exchange regulatory factor 1 (NHERF1), a member of a PDZ scaffolding protein family, was first identified as an organizer of membrane-bound protein complexes composed of hormone receptors, signal transduction pathways, and electrolyte and mineral transporters and channels. NHERF1 is involved in the regulation of Na+/H+ exchanger 3, Na+-dependent phosphate transporter 2a, and Na+-K+-ATPase through its ability to scaffold these transporters to the plasma membrane, allowing regulation of these protein complexes with their associated hormone receptors. Recently, NHERF1 has received increased interest in its involvement in a variety of functions, including cell structure and trafficking, tumorigenesis and tumor behavior, inflammatory responses, and tissue injury. In this review, we highlight the evidence for the expansive role of NHERF1 in cell biology and speculate on the implications for renal physiology and pathophysiology.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Humanos , Neoplasias/metabolismo
6.
Am J Pathol ; 189(6): 1190-1200, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30926337

RESUMEN

Na+/H+ exchange regulatory cofactor (NHERF)-1, a scaffolding protein, anchors multiple membrane proteins in renal proximal tubules. Cultured proximal tubule cells deficient in Nherf1 and proximal tubules from Nherf1-deficient mice exhibit aberrant trafficking. Nherf1-deficient cells also exhibit an altered transcription pattern and worse survival. These observations suggest that NHERF1 loss increases susceptibility to acute kidney injury (AKI). Male and female wild-type C57BL/6J and Nherf1 knockout mice were treated with saline or cisplatin (20 mg/kg dose i.p.) to induce AKI and were euthanized after 72 hours. Blood and urine were collected for assessments of blood urea nitrogen and neutrophil gelatinase-associated lipocalin, respectively. Kidneys were harvested for histology (hematoxylin and eosin, periodic acid-Schiff) and terminal deoxynucleotidyl transferase dUTP nick end labeling assay, Kim1 mRNA assessment, and Western blot analysis for cleaved caspase 3. Cisplatin treatment was associated with significantly greater severity of AKI in knockout compared with wild-type mice, as demonstrated by semiquantitative injury score (2.8 versus 1.89, P < 0.001), blood urea nitrogen (151.8 ± 17.2 mg/dL versus 97.8 ± 10.1 mg/dL, P < 0.05), and neutrophil gelatinase-associated lipocalin urine protein (55.6 ± 21.3 µg/mL versus 2.7 ± 0.53 µg/mL, P < 0.05). Apoptosis markers were significantly increased in cisplatin-treated Nherf1 knockout and wild-type mice compared to respective controls. These data suggest that NHERF1 loss increases susceptibility to AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Cisplatino/efectos adversos , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasa 3/metabolismo , Cisplatino/farmacología , Susceptibilidad a Enfermedades , Femenino , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Lipocalina 2/metabolismo , Masculino , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Intercambiadores de Sodio-Hidrógeno/genética
7.
Am J Physiol Cell Physiol ; 313(2): C197-C206, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28515088

RESUMEN

Dopamine decreases Na-K-ATPase (NKA) activity by PKC-dependent phosphorylation and endocytosis of the NKA α1. Dopamine-mediated regulation of NKA is impaired in aging and some forms of hypertension. Using opossum (OK) proximal tubule cells (PTCs), we demonstrated that sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) associates with NKA α1 and dopamine-1 receptor (D1R). This association is required for the dopamine-mediated regulation of NKA. In OK cells, dopamine decreases NHERF-1 association with NKA α1 but increases its association with D1R. However, it is not known whether NHERF-1 plays a role in dopamine-mediated NKA regulation in animal models of hypertension. We hypothesized that defective dopamine-mediated regulation of NKA results from the decrease in NHERF-1 expression in rat renal PTCs isolated from animal models of hypertension [spontaneously hypertensive rats (SHRs) and aged F344 rats]. To test this hypothesis, we isolated and cultured renal PTCs from 22-mo-old F344 rats and their controls, normotensive 4-mo-old F344 rats, and SHRs and their controls, normotensive Wistar-Kyoto (WKY) rats. The results demonstrate that in both hypertensive models (SHR and aged F344), NHERF-1 expression, dopamine-mediated phosphorylation of NKA, and ouabain-inhibitable K+ transport are reduced. Transfection of NHERF-1 into PTCs from aged F344 and SHRs restored dopamine-mediated inhibition of NKA. These results suggest that decreased renal NHERF-1 expression contributes to the impaired dopamine-mediated inhibition of NKA in PTCs from animal models of hypertension.


Asunto(s)
Hipertensión/genética , Túbulos Renales Proximales/metabolismo , Fosfoproteínas/biosíntesis , Intercambiadores de Sodio-Hidrógeno/biosíntesis , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , Animales , Presión Sanguínea/genética , Línea Celular , Modelos Animales de Enfermedad , Dopamina/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Hipertensión/metabolismo , Hipertensión/patología , Riñón/metabolismo , Riñón/patología , Túbulos Renales Proximales/patología , Masculino , Fosfoproteínas/genética , Ratas , Ratas Endogámicas SHR , Transducción de Señal/genética , Intercambiadores de Sodio-Hidrógeno/genética , ATPasa Intercambiadora de Sodio-Potasio/genética
8.
Biochim Biophys Acta ; 1863(11): 2624-2636, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27496272

RESUMEN

Our laboratory has recently demonstrated that low concentrations of ouabain increase blood pressure in rats associated with stimulation of NaK ATPase activity and activation of the Src signaling cascade in NHE1-dependent manner. Proteomic analysis of human kidney proximal tubule cells (HKC11) suggested that the Angiotensin II type 1 receptor (AT1R) as an ouabain-associating protein. We hypothesize that ouabain-induced stimulation of NaK ATPase activity is mediated through AT1R. To test this hypothesis, we examined the effect of ouabain on renal cell angiotensin II production, the effect of AT1R inhibition on ouabain-stimulated NKA activity, and the effect of ouabain on NKA-AT1R association. Ouabain increased plasma angiotensin II levels in rats treated with ouabain (1µg/kg body wt./day) for 9days and increased angiotensin II levels in cell culture media after 24h treatment with ouabain in human (HKC11), mouse (MRPT), and human adrenal cells. Ouabain 10pM stimulated NKA-mediated 86Rb uptake and phosphorylation of EGFR, Src, and ERK1/2. These effects were prevented by the AT1R receptor blocker candesartan. FRET and TIRF microscopy using Bodipy-labeled ouabain and mCherry-NKA or mCherry-AT1R demonstrated association of ouabain with AT1R and NKA. Further our FRET and TIRF studies demonstrated increased association between AT1R and NKA upon treatment with low dose ouabain. We conclude that ouabain stimulates NKA in renal proximal tubule cells through an angiotensin/AT1R-dependent mechanism and that this pathway contributes to cardiac glycoside associated hypertension.


Asunto(s)
Activadores de Enzimas/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Ouabaína/farmacología , Receptor de Angiotensina Tipo 1/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Angiotensina II/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Angiotensinógeno/metabolismo , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Activación Enzimática , Activadores de Enzimas/toxicidad , Hipertensión/inducido químicamente , Hipertensión/enzimología , Túbulos Renales Proximales/enzimología , Ratones , Ouabaína/toxicidad , Peptidil-Dipeptidasa A/metabolismo , Fosforilación , Unión Proteica , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/genética , Transducción de Señal/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/genética , Transfección
9.
Am J Physiol Cell Physiol ; 310(3): C205-15, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26834145

RESUMEN

Parathyroid hormone (PTH) is a key regulator of the expression and function of the type IIa sodium-phosphate cotransporter (Npt2a), the protein responsible for regulated renal phosphate reabsorption. We previously showed that PTH induces rapid decay of Npt2a mRNA through posttranscriptional mechanisms. We hypothesized that PTH-induced changes in RNA-binding protein (RBP) activity mediate the degradation of Npt2a mRNA. To address this aim, we treated opossum kidney (OK) cells, a PTH-sensitive proximal tubule cell culture model, with 100 nM PTH for 30 min and 2 h, followed by mass spectrometry characterization of the PTH-stimulated phosphoproteome. We identified 1,182 proteins differentially phosphorylated in response to PTH, including 68 RBPs. Preliminary analysis identified a phospho-RBP, hnRNPK-homology-type-splicing regulatory protein (KSRP), with predicted binding sites for the 3'-untranslated region (UTR) of Npt2a mRNA. Western blot analysis confirmed expression of KSRP in OK cells and showed PTH-dependent translocation to the nucleus. Immunoprecipitation of KSRP from control and PTH-treated cells followed by RNA isolation and RT-quantitative PCR analysis identified Npt2a mRNA from both control and PTH-treated KSRP pulldowns. Knockdown of KSRP followed by PTH treatment showed that KSRP is required for mediating PTH-stimulated reduction in sodium/hydrogen exchanger 3 mRNA, but not Npt2a mRNA. We conclude that 1) PTH is a major regulator of both transcription and translation, and 2) KSRP binds Npt2a mRNA but its role in PTH regulation of Npt2a mRNA is not clear.


Asunto(s)
Túbulos Renales Proximales/efectos de los fármacos , Hormona Paratiroidea/farmacología , Estabilidad del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Regiones no Traducidas 3' , Animales , Sitios de Unión , Línea Celular , Biología Computacional , Bases de Datos Genéticas , Túbulos Renales Proximales/metabolismo , Espectrometría de Masas , Zarigüeyas , Fosforilación , Unión Proteica , Proteómica/métodos , Interferencia de ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo , Transfección
10.
Cell Physiol Biochem ; 39(1): 1-12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27322746

RESUMEN

BACKGROUND/AIMS: Phosphate homeostasis is controlled by the renal reabsorption of Pi by the type IIa sodium phosphate cotransporter, Npt2a, which is localized in the proximal tubule brush border membrane. Regulation of Npt2a expression is a key control point to maintain phosphate homeostasis with most studies focused on regulating protein levels in the brush border membrane. Molecular mechanisms that control Npt2a mRNA, however, remain to be defined. We have reported that Npt2a mRNA and protein levels correlate directly with the expression of the Na+/H+ exchanger regulatory factor 1 (NHERF-1) using opossum kidney (OK) cells and the NHERF-1-deficient OK-H cells. The goal of this study was to determine whether NHERF-1 contributes to transcriptional and/or post-transcriptional mechanisms controlling Npt2a mRNA levels. METHODS: Npt2a mRNA half-life was compared between OK and NHERF-1 deficient OK-H cell lines. oNpt2a promoter-reporter gene assays and electrophoretic mobility shift assays (EMSA) were used identify a NHERF-1 responsive region within the oNpt2a proximal promoter. RESULTS: Npt2a mRNA half-life is the same in OK and OK-H cells. The NHERF-1 responsive region lies within the proximal promoter in a region that contains a highly conserved CAATT box and G-rich element. Specific protein-DNA complex formation with the CAATT element is altered by the absence of NHERF-1 (OK v OK-H EMSA) although NHERF-1 does not directly contribute to complex formation. CONCLUSION: NHERF-1 helps maintain steady-state Npt2a mRNA levels in OK cells through indirect mechanisms that help promote protein-DNA interactions at the Npt2a proximal promoter.


Asunto(s)
ADN/genética , Fosfoproteínas/genética , Regiones Promotoras Genéticas/genética , Intercambiadores de Sodio-Hidrógeno/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , Línea Celular , ADN/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Zarigüeyas , Fosfatos/metabolismo , Fosfatos/farmacología , Fosfoproteínas/metabolismo , Unión Proteica , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo
12.
Biochim Biophys Acta ; 1843(6): 1089-102, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24566089

RESUMEN

Recent studies suggest that at low concentrations, ouabain increases Na-K ATPase and NHE1 activity and activates the Src signaling cascade in proximal tubule cells. Our laboratory demonstrated that low concentrations of ouabain increase blood pressure in rats. We hypothesize that ouabain-induced increase in blood pressure and Na-K ATPase activity requires NHE1 activity and association. To test this hypothesis we treated rats with ouabain (1µgkg body wt(-1)day(-1)) for 9days in the presence or absence of the NHE1 inhibitor, zoniporide. Ouabain stimulated a significant increase in blood pressure which was prevented by zoniporide. Using NHE1-expressing Human Kidney cells 2 (HK2), 8 (HK8) and 11 (HK11) and Mouse Kidney cells from Wild type (WT) and NHE1 knock-out mice (SWE) cell lines, we show that ouabain stimulated Na-K ATPase activity and surface expression in a Src-dependent manner in NHE1-expressing cells but not in NHE1-deplete cells. Zoniporide prevented ouabain-induced stimulation of (86)Rb uptake in the NHE1-expressing cells. FRET and TIRF microscopy showed that ouabain increased association between GFP-NHE1 and mCherry-Na-K ATPase transfected into NHE1-deficient SWE cells. Mutational analysis demonstrated that the caveolin binding motif (CBM) of Na-K ATPase α1 is required for translocation of both Na-K ATPase α1 and NHE1 to the basolateral membrane. Mutations in activity or scaffold domains of NHE1 resulted in loss of ouabain-mediated regulation of Na-K ATPase. These results support that NHE1 is required for the ouabain-induced increase in blood pressure, and that the caveolin binding motif of Na-K ATPase α1 as well as the activity and scaffolding domains of NHE1 are required for their functional association.


Asunto(s)
Cardiotónicos/farmacología , Proteínas de Transporte de Catión/fisiología , Túbulos Renales Proximales/efectos de los fármacos , Ouabaína/farmacología , Intercambiadores de Sodio-Hidrógeno/fisiología , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Biotinilación , Presión Sanguínea/efectos de los fármacos , Western Blotting , Caveolina 1/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Humanos , Hidrólisis , Técnicas para Inmunoenzimas , Transporte Iónico/efectos de los fármacos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , Ratones Noqueados , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Intercambiador 1 de Sodio-Hidrógeno , Familia-src Quinasas/metabolismo
13.
Am J Physiol Renal Physiol ; 309(2): F109-19, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25995109

RESUMEN

Na+/H+ exchanger regulatory factor (NHERF1) plays a critical role in the renal transport of phosphate by binding to Na+-Pi cotransporter (NpT2a) in the proximal tubule. While the association between NpT2a and NHERF1 in the apical membrane is known, the role of NHERF1 to regulate the trafficking of NpT2a has not been studied. To address this question, we performed cell fractionation by sucrose gradient centrifugation in opossum kidney (OK) cells placed in low-Pi medium to stimulate forward trafficking of NpT2a. Immunoblot analysis demonstrated expression of NpT2a and NHERF1 in the endoplasmic reticulum (ER)/Golgi. Coimmunoprecipitation demonstrated a NpT2a-NHERF1 interaction in the ER/Golgi. Low-Pi medium for 4 and 8 h triggered a decrease in NHERF1 in the plasma membrane with a corresponding increase in the ER/Golgi. Time-lapse total internal reflection fluorescence imaging of OK cells placed in low-Pi medium, paired with particle tracking and mean square displacement analysis, indicated active directed movement of NHERF1 at early and late time points, whereas NpT2a showed active movement only at later times. Silence of NHERF1 in OK cells expressing green fluorescent protein (GFP)-NpT2a resulted in an intracellular accumulation of GFP-NpT2a. Transfection with GFP-labeled COOH-terminal (TRL) PDZ-binding motif deleted or wild-type NpT2a in OK cells followed by cell fractionation and immunoprecipitation confirmed that the interaction between NpT2a and NHERF1 was dependent on the TRL motif of NpT2a. We conclude that appropriate trafficking of NpT2a to the plasma membrane is dependent on the initial association between NpT2a and NHERF1 through the COOH-terminal TRL motif of NpT2a in the ER/Golgi and requires redistribution of NHERF1 to the ER/Golgi.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Riñón/metabolismo , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Animales , Línea Celular , Didelphis
14.
Biochim Biophys Acta ; 1832(10): 1734-43, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23639630

RESUMEN

Breast cancer is the second leading cause of death in women and thus has received a great deal of attention by researchers. Recent studies suggested decreased occurrence of cancer in patients treated with cardiac glycosides (CGs) for heart conditions. Because CGs induce their cellular effects via the Na(+), K(+) ATPase (Na-K), we treated four breast cancer cell lines (MCF-7, T47D, MDA-MB453, and MDA-MB231) and a non-cancerous breast ductal epithelial cell line (MCF-10A) with ouabain, a well-characterized CG, and measured cell proliferation by measuring bromodeoxyuridine incorporation. Ouabain (1µM) decreased cell proliferation in all cell lines studied except MDA-MB453 cells. Western blot of Na-K α and ß subunits showed α1, α3, and ß1 expression in all cell lines except MDA-MB453 cells where Na-K protein and mRNA were absent. Potassium uptake, measured as rubidium ((86)Rb) flux, and intracellular potassium were both significantly higher in MDA-MB453 cells compared to MCF-10A cells. RT-qPCR suggested a 7 fold increase in voltage-gated potassium channel (KCNQ2) expression in MDA-MB453 cells compared to MCF-10A cells. Inhibition of KCNQ2 prevented cell growth and (86)Rb uptake in MDA-MB453 cells but not in MCF-10A cells. All cancer cells had significantly higher vacuolar H-ATPase (V-ATPase) activity than MCF-10A cells. Inhibition of V-ATPase decreased (86)Rb uptake and intracellular potassium in MDA-MB453 cells but not in MCF-10A cells. The findings point to the absence of Na-K, high hERG and KCNQ2 expression, elevated V-ATPase activity and sensitivity to V-ATPase inhibitors in MDA-MB453. We conclude that cancer cells exhibit fundamentally different metabolic pathways for maintenance of intracellular ion homeostasis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Metástasis de la Neoplasia , Potasio/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Imidazoles/farmacología , Transporte Iónico , Ouabaína/farmacología , Fenetilaminas/farmacología , Rubidio/metabolismo , Sodio/metabolismo , Sulfonamidas/farmacología
15.
Biochim Biophys Acta ; 1833(10): 2143-52, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23684706

RESUMEN

The mechanisms by which aldosterone increases Na(+), K(+) ATPase and sodium channel activity in cortical collecting duct and distal nephron have been extensively studied. Recent investigations demonstrate that aldosterone increases Na-H exchanger-3 (NHE-3) activity, bicarbonate transport, and H(+) ATPase in proximal tubules. However, the role of aldosterone in regulation of Na(+), K(+) ATPase in proximal tubules is unknown. We hypothesize that aldosterone increases Na(+), K(+) ATPase activity in proximal tubules through activation of the mineralocorticoid receptor (MR). Immunohistochemistry of kidney sections from human, rat, and mouse kidneys revealed that the MR is expressed in the cytosol of tubules staining positively for Lotus tetragonolobus agglutinin and type IIa sodium-phosphate cotransporter (NpT2a), confirming proximal tubule localization. Adrenalectomy in Sprague-Dawley rats decreased expression of MR, ENaC α, Na(+), K(+) ATPase α1, and NHE-1 in all tubules, while supplementation with aldosterone restored expression of above proteins. In human kidney proximal tubule (HKC11) cells, treatment with aldosterone resulted in translocation of MR to the nucleus and phosphorylation of SGK-1. Treatment with aldosterone also increased Na(+), K(+) ATPase-mediated (86)Rb uptake and expression of Na(+), K(+) ATPase α1 subunits in HKC11 cells. The effects of aldosterone on Na(+), K(+) ATPase-mediated (86)Rb uptake were prevented by spironolactone, a competitive inhibitor of aldosterone for the MR, and partially by Mifepristone, a glucocorticoid receptor (GR) inhibitor. These results suggest that aldosterone regulates Na(+), K(+) ATPase in renal proximal tubule cells through an MR-dependent mechanism.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aldosterona/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Receptores de Mineralocorticoides/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Western Blotting , Membrana Celular , Células Cultivadas , Humanos , Hidrólisis , Técnicas para Inmunoenzimas , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , Ratas , Ratas Sprague-Dawley
17.
Clin Kidney J ; 17(6): sfae143, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899159

RESUMEN

The global derangement of mineral metabolism that accompanies chronic kidney disease (CKD-MBD) is a major driver of the accelerated mortality for individuals with kidney disease. Advances in the delivery of dialysis, in the composition of phosphate binders, and in the therapies directed towards secondary hyperparathyroidism have failed to improve the cardiovascular event profile in this population. Many obstacles have prevented progress in this field including the incomplete understanding of pathophysiology, the lack of clinical targets for early stages of chronic kidney disease, and the remarkably wide diversity in clinical manifestations. We describe in this review a novel approach to CKD-MBD combining mathematical modelling of biologic processes with machine learning artificial intelligence techniques as a tool for the generation of new hypotheses and for the development of innovative therapeutic approaches to this syndrome. Clinicians need alternative targets of therapy, tools for risk profile assessment, and new therapies to address complications early in the course of disease and to personalize therapy to each individual. The complexity of CKD-MBD suggests that incorporating artificial intelligence techniques into the diagnostic, therapeutic, and research armamentarium could accelerate the achievement of these goals.

18.
Am J Physiol Renal Physiol ; 304(8): F1076-85, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23344572

RESUMEN

The acute inhibitory effects of parathyroid hormone (PTH) on proximal tubule Na(+)-K(+)-ATPase (Na-K) and sodium-dependent phosphate (NaPi) transport have been extensively studied, while little is known about the chronic effects of PTH. Patients with primary hyperparathyroidism, a condition characterized by chronic elevations in PTH, exhibit persistent hypophosphatemia but not significant evidence of salt wasting. We postulate that chronic PTH stimulation results in differential desensitization of PTH responses. To address this hypothesis, we compared the effects of chronic PTH stimulation on Na-P(i) cotransporter (Npt2a) expression and Na-K activity and expression in Sprague Dawley rats, transgenic mice featuring parathyroid-specific cyclin D1 overexpression (PTH-D1), and proximal tubule cell culture models. We demonstrated a progressive decrease in brush-border membrane (BBM) expression of Npt2a from rats treated with PTH for 6 h or 4 days, while Na-K expression and activity in the basolateral membranes (BLM) exhibited an initial decrease followed by recovery to control levels by 4 days. Npt2a protein expression in PTH-D1 mice was decreased relative to control animals, whereas levels of Na-K, NHERF-1, and PTH receptor remained unchanged. In PTH-D1 mice, NpT2a mRNA expression was reduced by 50% relative to control mice. In opossum kidney proximal tubule cells, PTH decreased Npt2a mRNA levels. Both actinomycin D and cycloheximide treatment prevented the PTH-mediated decrease in Npt2a mRNA, suggesting that the PTH response requires transcription and translation. These findings suggest that responses to chronic PTH exposure are selectively regulated at a posttranscriptional level. The persistence of the phosphaturic response to PTH occurs through posttranscriptional mechanisms.


Asunto(s)
Hipofosfatemia/genética , Túbulos Renales Proximales/fisiología , Hormona Paratiroidea/metabolismo , Estabilidad del ARN/fisiología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Animales , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Modelos Animales de Enfermedad , Hipofosfatemia/metabolismo , Corteza Renal/citología , Corteza Renal/fisiología , Túbulos Renales Proximales/citología , Ratones , Ratones Transgénicos , Zarigüeyas , Hormona Paratiroidea/farmacología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Procesamiento Postranscripcional del ARN/fisiología , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo
19.
Am J Physiol Renal Physiol ; 303(3): F321-7, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22535796

RESUMEN

The renal excretion of inorganic phosphate is regulated in large measure by three hormones, namely, parathyroid hormone, dopamine, and fibroblast growth factor-23. Recent experiments have indicated that the major sodium-dependent phosphate transporter in the renal proximal tubule, Npt2a, binds to the adaptor protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) and in the absence of NHERF-1, the inhibitory effect of these three hormones is absent. From these observations, a new model for the hormonal regulation of renal phosphate transport was developed. The downstream signaling pathways of these hormones results in the phosphorylation of the PDZ 1 domain of NHERF-1 and the dissociation of Npt2a/NHERF-1 complexes. In turn, this dissociation facilitates the endocytosis of Npt2a with a subsequent decrease in the apical membrane abundance of the transporter and a decrease in phosphate reabsorption. The current review outlines the experimental observations supporting the operation of this unique regulatory system.


Asunto(s)
Dopamina/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Hormonas/metabolismo , Riñón/metabolismo , Hormona Paratiroidea/fisiología , Fosfatos/metabolismo , Fosfoproteínas/fisiología , Intercambiadores de Sodio-Hidrógeno/fisiología , Animales , Transporte Biológico Activo/fisiología , Factor-23 de Crecimiento de Fibroblastos , Humanos , Modelos Moleculares , Dominios PDZ/fisiología , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilación , Conformación Proteica , Transducción de Señal/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo
20.
Front Med (Lausanne) ; 9: 807994, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402468

RESUMEN

Chronic kidney disease (CKD) leads to clinically severe bone loss, resulting from the deranged mineral metabolism that accompanies CKD. Each individual patient presents a unique combination of risk factors, pathologies, and complications of bone disease. The complexity of the disorder coupled with our incomplete understanding of the pathophysiology has significantly hampered the ability of nephrologists to prevent fractures, a leading comorbidity of CKD. Much has been learned from animal models; however, we propose in this review that application of multiple techniques of mathematical modeling and artificial intelligence can accelerate our ability to develop relevant and impactful clinical trials and can lead to better understanding of the osteoporosis of CKD. We highlight the foundational work that informed our current model development and discuss the potential applications of our approach combining principles of quantitative systems pharmacology, model predictive control, and reinforcement learning to deliver individualized precision medical therapy of this highly complex disorder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA