Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Basic Res Cardiol ; 118(1): 15, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138037

RESUMEN

Calcium transfer into the mitochondrial matrix during sarcoplasmic reticulum (SR) Ca2+ release is essential to boost energy production in ventricular cardiomyocytes (VCMs) and match increased metabolic demand. Mitochondria from female hearts exhibit lower mito-[Ca2+] and produce less reactive oxygen species (ROS) compared to males, without change in respiration capacity. We hypothesized that in female VCMs, more efficient electron transport chain (ETC) organization into supercomplexes offsets the deficit in mito-Ca2+ accumulation, thereby reducing ROS production and stress-induced intracellular Ca2+ mishandling. Experiments using mitochondria-targeted biosensors confirmed lower mito-ROS and mito-[Ca2+] in female rat VCMs challenged with ß-adrenergic agonist isoproterenol compared to males. Biochemical studies revealed decreased mitochondria Ca2+ uniporter expression and increased supercomplex assembly in rat and human female ventricular tissues vs male. Importantly, western blot analysis showed higher expression levels of COX7RP, an estrogen-dependent supercomplex assembly factor in female heart tissues vs males. Furthermore, COX7RP was decreased in hearts from aged and ovariectomized female rats. COX7RP overexpression in male VCMs increased mitochondrial supercomplexes, reduced mito-ROS and spontaneous SR Ca2+ release in response to ISO. Conversely, shRNA-mediated knockdown of COX7RP in female VCMs reduced supercomplexes and increased mito-ROS, promoting intracellular Ca2+ mishandling. Compared to males, mitochondria in female VCMs exhibit higher ETC subunit incorporation into supercomplexes, supporting more efficient electron transport. Such organization coupled to lower levels of mito-[Ca2+] limits mito-ROS under stress conditions and lowers propensity to pro-arrhythmic spontaneous SR Ca2+ release. We conclude that sexual dimorphism in mito-Ca2+ handling and ETC organization may contribute to cardioprotection in healthy premenopausal females.


Asunto(s)
Miocitos Cardíacos , Retículo Sarcoplasmático , Ratas , Masculino , Femenino , Animales , Humanos , Anciano , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caracteres Sexuales , Mitocondrias/metabolismo , Señalización del Calcio , Calcio/metabolismo
2.
Curr Osteoporos Rep ; 19(2): 166-174, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33523424

RESUMEN

PURPOSE OF REVIEW: Many mechanical load-bearing joints of the body are prone to posttraumatic osteoarthritis (PTOA), including the knee joint and temporomandibular joint (TMJ). Early detection of PTOA can be beneficial in prevention or alleviating further progression of the disease. RECENT FINDINGS: Various mouse models, similar to those used in development of novel diagnosis strategies for early stages of OA, have been proposed to study early PTOA. While many studies have focused on OA and PTOA in the knee joint, early diagnostic methods for OA and PTOA of the TMJ are still not well established. Previously, we showed that fluorescent near-infrared imaging can diagnose inflammation and cartilage damage in mouse models of knee PTOA. Here we propose that the same approach can be used for early diagnosis of TMJ-PTOA. In this review, we present a brief overview of PTOA, application of relevant mouse models, current imaging methods available to examine TMJ-PTOA, and the prospects of near-infrared optical imaging to diagnose early-stage TMJ-OA.


Asunto(s)
Osteoartritis/diagnóstico , Animales , Diagnóstico por Imagen , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Diagnóstico Precoz , Humanos , Ratones , Osteoartritis/patología , Osteoartritis de la Rodilla/diagnóstico , Osteoartritis de la Rodilla/patología , Trastornos de la Articulación Temporomandibular/diagnóstico , Trastornos de la Articulación Temporomandibular/patología
3.
J Biol Chem ; 290(22): 14166-80, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25903133

RESUMEN

The vacuolar H(+)-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes.


Asunto(s)
Lisosomas/metabolismo , Fagosomas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Receptores de Superficie Celular/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Escherichia coli/metabolismo , Femenino , Fibroblastos/metabolismo , Concentración de Iones de Hidrógeno , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Fusión de Membrana , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica , Microscopía Fluorescente , Fracciones Subcelulares/metabolismo
4.
Cell Physiol Biochem ; 34(2): 519-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25116351

RESUMEN

BACKGROUND/AIMS: HuR is an RNA-binding protein that regulates the post-transcriptional life of thousands of cellular mRNAs and promotes cell survival. HuR is expressed as two mRNA transcripts that are differentially regulated by cell stress. The goal of this study is to define factors that promote transcription of the longer alternate form. METHODS: Effects of transcription factors on HuR expression were determined by inhibition or overexpression of these factors followed by competitive RT-PCR, gel mobility shift, and chromatin immunoprecipitation. Transcription factor expression patterns were identified through competitive RT-PCR and Western analysis. Stress responses were assayed in thapsigargin-treated proximal tubule cells and in ischemic rat kidney. RESULTS: A previously described NF-κB site and a newly identified Sp/KLF factor binding site were shown to be important for transcription of the long HuR mRNA. KLF8, but not Sp1, was shown to bind this site and increase HuR mRNA levels. Cellular stress in cultured or native proximal tubule cells resulted in a rapid decrease of KLF8 levels that paralleled those of the long HuR mRNA variant. CONCLUSIONS: These results demonstrate that KLF8 can participate in regulating expression of alternate forms of HuR mRNA along with NF-κB and other factors, depending on cellular contexts.


Asunto(s)
Proteínas ELAV/fisiología , Proteínas Represoras/fisiología , Animales , Secuencia de Bases , Western Blotting , Inmunoprecipitación de Cromatina , Cartilla de ADN , Proteínas ELAV/genética , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/fisiología , Células LLC-PK1 , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , Ratas , Porcinos
5.
Am J Physiol Cell Physiol ; 305(9): C981-96, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23986201

RESUMEN

Vacuolar ATPases (V-ATPases) are highly conserved proton pumps that regulate organelle pH. Epithelial luminal pH is also regulated by cAMP-dependent traffic of specific subunits of the V-ATPase complex from endosomes into the apical membrane. In the intestine, cAMP-dependent traffic of cystic fibrosis transmembrane conductance regulator (CFTR) channels and the sodium hydrogen exchanger (NHE3) in the brush border regulate luminal pH. V-ATPase was found to colocalize with CFTR in intestinal CFTR high expresser (CHE) cells recently. Moreover, apical traffic of V-ATPase and CFTR in rat Brunner's glands was shown to be dependent on cAMP/PKA. These observations support a functional relationship between V-ATPase and CFTR in the intestine. The current study examined V-ATPase and CFTR distribution in intestines from wild-type, CFTR(-/-) mice and polarized intestinal CaCo-2BBe cells following cAMP stimulation and inhibition of CFTR/V-ATPase function. Coimmunoprecipitation studies examined V-ATPase interaction with CFTR. The pH-sensitive dye BCECF determined proton efflux and its dependence on V-ATPase/CFTR in intestinal cells. cAMP increased V-ATPase/CFTR colocalization in the apical domain of intestinal cells and redistributed the V-ATPase Voa1 and Voa2 trafficking subunits from the basolateral membrane to the brush border membrane. Voa1 and Voa2 subunits were localized to endosomes beneath the terminal web in untreated CFTR(-/-) intestine but redistributed to the subapical cytoplasm following cAMP treatment. Inhibition of CFTR or V-ATPase significantly decreased pHi in cells, confirming their functional interdependence. These data establish that V-ATPase traffics into the brush border membrane to regulate proton efflux and this activity is dependent on CFTR in the intestine.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Enterocitos/metabolismo , ATPasas de Translocación de Protón Vacuolares/fisiología , Animales , Células CACO-2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microvellosidades/metabolismo , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley
6.
J Cell Physiol ; 228(1): 182-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22674407

RESUMEN

Human antigen R (HuR) is a post-transcriptional regulator of gene expression that plays a key role in stabilizing mRNAs during cellular stress, leading to enhanced survival. HuR expression is tightly regulated through multiple transcription and post-transcriptional controls. Although HuR is known to stabilize a subset of mRNAs involved in cell survival, its role in the survival pathway of PI3-kinase/Akt signaling is unclear. Here, we show that in renal proximal tubule cells, HuR performs a central role in cell survival by amplifying Akt signaling in a positive feedback loop. Key to this feedback loop is HuR-mediated stabilization of mRNA encoding Grb10, an adaptor protein whose expression is critical for Akt activation. Stimulation of Akt by interaction with Grb10 then activates NF-κB, which further enhances HuR mRNA and protein expression. This feedback loop is active in unstressed cells, but its effects are increased during stress. Therefore, this study demonstrates a central role for HuR in Akt signaling and reveals a mechanism by which modest changes in HuR levels below or above normal may be amplified, potentially resulting in cell death or cellular transformation.


Asunto(s)
Apoptosis/fisiología , Proteínas ELAV/metabolismo , Retroalimentación Fisiológica/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular , Proteínas ELAV/genética , Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , FN-kappa B , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Reacción en Cadena de la Polimerasa , Análisis por Matrices de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Porcinos
7.
Front Bioeng Biotechnol ; 11: 1243303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675403

RESUMEN

Introduction: Myosin IXB (MYO9B) is an unconventional myosin with RhoGAP activity and thus is a regulator of actin cytoskeletal organization. MYO9B was previously shown to be necessary for skeletal growth and health and to play a role in actin-based functions of both osteoblasts and osteoclasts. However, its role in responses to mechanical stimulation of bone cells has not yet been described. Therefore, experiments were undertaken to determine the role of MYO9B in bone cell responses to mechanical stress both in vitro and in vivo. Methods: MYO9B expression was knocked down in osteoblast and osteocyte cell lines using RNA interference and the resulting cells were subjected to mechanical stresses including cyclic tensile strain, fluid shear stress, and plating on different substrates (no substrate vs. monomeric or polymerized collagen type I). Osteocytic cells were also subjected to MYO9B regulation through Slit-Robo signaling. Further, wild-type or Myo9b -/- mice were subjected to a regimen of whole-body vibration (WBV) and changes in bone quality were assessed by micro-CT. Results: Unlike control cells, MYO9B-deficient osteoblastic cells subjected to uniaxial cyclic tensile strain were unable to orient their actin stress fibers perpendicular to the strain. Osteocytic cells in which MYO9B was knocked down exhibited elongated dendrites but were unable to respond normally to treatments that increase dendrite length such as fluid shear stress and Slit-Robo signaling. Osteocytic responses to mechanical stimuli were also found to be dependent on the polymerization state of collagen type I substrates. Wild-type mice responded to WBV with increased bone tissue mineral density values while Myo9b -/- mice responded with bone loss. Discussion: These results demonstrate that MYO9B plays a key role in mechanical stress-induced responses of bone cells in vitro and in vivo.

8.
Bone ; 163: 116501, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35872108

RESUMEN

One-third of postmenopausal women experience at least one osteoporotic bone fracture in their lifetime that occurs spontaneously or from low-impact events. However, osteoporosis-associated jaw bone fractures are extremely rare. It was also observed that jaw bone marrow stem cells (BMSCs) have a higher capacity to form mineralized tissues than limb BMSCs. At present, the underlying causes and mechanisms of variations between jaw bone and limb bone during postmenopause are largely unknown. Thus, the objective of the current study was to examine the site-specific effects of estrogen deficiency using comprehensive analysis of bone quantity and quality, and its association with characterization of cellular components of bone. Nine rats (female, 6 months old) for each bilateral sham and ovariectomy (OVX) surgery were obtained and maintained for 2 months after surgery. A hemi-mandible and a femur from each rat were characterized for parameters of volume, mineral density, cortical and trabecular morphology, and static and dynamic mechanical analysis. Another set of 5 rats (female, 9 months old) was obtained for assays of BMSCs. Following cytometry to identify BMSCs, bioassays for proliferation, and osteogenic, adipogenic, chondrogenic differentiation, and cell mitochondrial stress tests were performed. In addition, mRNA expression of BMSCs was analyzed. OVX decreased bone quantity and quality (mineral content, morphology, and energy dissipation) of femur while those of mandible were not influenced. Cellular assays demonstrated that mandible BMSCs showed greater differentiation than femur BMSCs. Gene ontology pathway analysis indicated that the mandibular BMSCs showed most significant differential expression of genes in the regulatory pathways of osteoblast differentiation, SMAD signaling, cartilage development, and glucose transmembrane transporter activity. These findings suggested that active mandibular BMSCs maintain bone formation and mineralization by balancing the rapid bone resorption caused by estrogen deficiency. These characteristics likely help reduce the risk of osteoporotic fracture in postmenopausal jawbone.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Densidad Ósea , Huesos , Diferenciación Celular , Estrógenos , Femenino , Humanos , Osteogénesis , Ovariectomía , Ratas , Células Madre
9.
Life Sci ; 311(Pt A): 121158, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36370870

RESUMEN

AIMS: Evidence suggests alterations of thyroid hormone levels can disrupt normal bone development. Most data suggest the major targets of thyroid hormones to be the Htra1/Igf1 pathway. Recent discovery by our group suggests involvement of targets WNT pathway, specifically overexpression of antagonist Sfrp4 in the presence of exogenous thyroid hormone. MAIN METHODS: Here we aimed to model these interactions in vitro using primary and isotype cell lines to determine if thyroid hormone drives increased Sfrp4 expression in cells relevant to craniofacial development. Transcriptional profiling, bioinformatics interrogation, protein and function analyses were used. KEY FINDINGS: Affymetrix transcriptional profiling found Sfrp4 overexpression in primary cranial suture derived cells stimulated with thyroxine in vitro. Interrogation of the SFRP4 promoter identified multiple putative binding sites for thyroid hormone receptors. Experimentation with several cell lines demonstrated that thyroxine treatment induced Sfrp4 expression, demonstrating that Sfrp4 mRNA and protein levels are not tightly coupled. Transcriptional and protein analyses demonstrate thyroid hormone receptor binding to the proximal promoter of the target gene Sfrp4 in murine calvarial pre-osteoblasts. Functional analysis after thyroxine hormone stimulation for alkaline phosphatase activity shows that pre-osteoblasts increase alkaline phosphatase activity compared to other cell types, suggesting cell type susceptibility. Finally, we added recombinant SFRP4 to pre-osteoblasts in combination with thyroxine treatment and observed a significant decrease in alkaline phosphatase positivity. SIGNIFICANCE: Taken together, these results suggest SFRP4 may be a key regulatory molecule that prevents thyroxine driven osteogenesis. These data corroborate clinical findings indicating a potential for SFRP4 as a diagnostic or therapeutic target for hyperostotic craniofacial disorders.


Asunto(s)
Fosfatasa Alcalina , Tiroxina , Ratones , Animales , Tiroxina/metabolismo , Fosfatasa Alcalina/metabolismo , Osteoblastos/metabolismo , Vía de Señalización Wnt/genética , Osteogénesis/genética , Proteínas Proto-Oncogénicas/metabolismo
10.
J Biol Chem ; 285(13): 9506-9515, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20081229

RESUMEN

Osteoclasts use actin-rich attachment structures in place of focal adhesions for adherence to bone and non-bone substrates. On glass, osteoclasts generate podosomes, foot-like processes containing a core of F-actin and regulatory proteins that undergo high turnover. To facilitate bone resorption, osteoclasts generate an actin-rich sealing zone composed of densely packed podosome-like units. Patterning of both podosomes and sealing zones is dependent upon an intact microtubule system. A role for unconventional myosin X (Myo10), which can bind actin, microtubules, and integrins, was examined in osteoclasts. Immunolocalization showed Myo10 to be associated with the outer edges of immature podosome rings and sealing zones, suggesting a possible role in podosome and sealing zone positioning. Further, complexes containing both Myo10 and beta-tubulin were readily precipitated from osteoclasts lysates. RNAi-mediated suppression of Myo10 led to decreased cell and sealing zone perimeter, along with decreased motility and resorptive capacity. Further, siRNA-treated cells could not properly position podosomes following microtubule disruption. Osteoclasts overexpressing dominant negative Myo10 microtubule binding domains (MyTH4) showed a similar phenotype. Conversely, overexpression of full-length Myo10 led to increased formation of podosome belts along with larger sealing zones and enhanced bone resorptive capacity. These studies suggest that Myo10 plays a role in osteoclast attachment and podosome positioning by direct linkage of actin to the microtubule network.


Asunto(s)
Microtúbulos/metabolismo , Miosinas/fisiología , Osteoclastos/metabolismo , Actinas/química , Animales , Resorción Ósea , Línea Celular , Citoesqueleto/metabolismo , Genes Dominantes , Ratones , Miosinas/química , Fenotipo , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
11.
J Biol Chem ; 285(34): 26641-51, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20547766

RESUMEN

Osteoclasts resorb bone through the formation of a unique attachment structure called the sealing zone. In this study, a role for thyroid hormone receptor-interacting protein 6 (TRIP6) in sealing zone formation and osteoclast activity was examined. TRIP6 was shown to reside in the sealing zone through its association with tropomyosin 4, an actin-binding protein that regulates sealing dimensions and bone resorptive capacity. Suppression of TRIP6 in mature osteoclasts by RNA interference altered sealing zone dimensions and inhibited bone resorption, whereas overexpression of TRIP6 increased the sealing zone perimeter and enhanced bone resorption. Treatment of osteoclasts with lysophosphatidic acid (LPA), which phosphorylates TRIP6 at tyrosine 55 through a c-Src-dependent mechanism, caused increased association of TRIP6 with the sealing zone, as did overexpression of a TRIP6 cDNA bearing a phosphomimetic mutation at tyrosine 55. Further, LPA treatment caused increases in osteoclast fusion, sealing zone perimeter, and bone resorptive capacity. In contrast, overexpression of TRIP6 containing a nonphosphorylatable amino acid residue at position 55 severely diminished sealing zone formation and bone resorption and suppressed the effects of LPA on the cytoskeleton. LPA effects were mediated through its receptor isoform LPA(2), as indicated by treatments with receptor-specific agonists and antagonists. Thus, these studies suggest that TRIP6 is a critical downstream regulator of c-Src signaling and that its phosphorylation is permissive for its presence in the sealing zone where it plays a positive role in osteoclast bone resorptive capacity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Resorción Ósea/metabolismo , Osteoclastos/fisiología , Proteínas Tirosina Quinasas/metabolismo , Factores de Transcripción/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Proteína Tirosina Quinasa CSK , Fusión Celular , Proteínas con Dominio LIM , Lisofosfolípidos/farmacología , Ratones , Fosforilación , Complejo de la Endopetidasa Proteasomal , Familia-src Quinasas
12.
J Biol Chem ; 285(7): 4432-40, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20018854

RESUMEN

Human antigen R (HuR) is an RNA-binding protein with protective activities against cellular stress. This study considers the mechanisms by which HuR transcriptional regulation occurs in renal proximal tubule cells. Under basal conditions, HuR mRNA is expressed in two forms: one that contains a approximately 20-base 5'-untranslated region (UTR) sequence and one that contains a approximately 150-base, G+C-rich 5'-UTR that is inhibitory to translation. Recovery from cellular stresses such as thapsigargin and ATP depletion induced increased expression of the shorter, more translatable transcript and decreased expression of the longer form. Analysis of HuR upstream regions revealed sequences necessary for regulation of the shorter mRNA. Within the long, G+C-rich 5'-UTR exist multiple copies of the alternate Smad 1/5/8-binding motif GCCGnCGC. Recovery from ATP depletion induced increases in Smad 1/5/8 levels; further, gel shift and chromatin immunoprecipitation analyses demonstrated the ability of these Smads to bind to the relevant motif in the HuR 5'-UTR. Transfection of exogenous Smad 1 increased HuR mRNA expression. Finally, HuR mRNA expression driven by the Smad-binding sites was responsive to BMP-7, a protein with known protective effects against ischemic injury in kidney. These data suggest that transcriptional induction of a readily translatable HuR mRNA may be driven by a mechanism known to protect the kidney from injury and provides a novel pathway through which administration of BMP-7 may attenuate renal damage.


Asunto(s)
Antígenos de Superficie/genética , Proteína Morfogenética Ósea 7/farmacología , Proteínas de Unión al ARN/genética , Transcripción Genética/efectos de los fármacos , Regiones no Traducidas 5'/genética , Adenosina Trifosfato/metabolismo , Animales , Composición de Base/genética , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas ELAV , Proteína 1 Similar a ELAV , Ensayo de Cambio de Movilidad Electroforética , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Unión Proteica/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo , Porcinos , Transcripción Genética/genética
13.
J Biomech ; 122: 110462, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33915473

RESUMEN

Estrogen deficiency activates bone resorbing cells (osteoclasts) and to a lesser extent bone forming cells (osteoblasts), resulting in a gap between resorption and formation that leads to a net loss of bone. These cell activities alter bone architecture and tissue composition. Thus, the objective of this study is to examine whether multiscale (10-2 to 10-7 m) characterization can provide more integrated information to understand the effects of estrogen deficiency on the fracture risk of bone. This is the first study to examine the effects of estrogen deficiency on multiscale characteristics of the same bone specimen. Sprague-Dawley female rats (6 months old) were obtained for a bilateral ovariectomy (OVX) or a sham operation (sham). Micro-computed tomography of rat femurs provided bone volumetric, mineral density, and morphological parameters. Dynamic mechanical analysis, static elastic and fracture mechanical testing, and nanoindentation were also performed using the same femur. As expected, the current findings indicate that OVX reduces bone quantity (mass and bone mineral density) and quality (morphology, and fracture displacement). Additionally, they demonstrated reductions in amount and heterogeneity of tissue mineral density (TMD) and viscoelastic properties. The current results validate that multiscale characterization for the same bone specimen can provide more comprehensive insights to understand how the bone components contributed to mechanical behavior at different scales.


Asunto(s)
Densidad Ósea , Fémur , Animales , Femenino , Fémur/diagnóstico por imagen , Humanos , Ovariectomía , Ratas , Ratas Sprague-Dawley , Microtomografía por Rayos X
14.
J Mech Behav Biomed Mater ; 110: 103952, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32957244

RESUMEN

Postmenopausal osteoporosis causes severe loss of bone quantity and quality in limb bone but has a lesser effect on jaw bone. Thus, the objective of this study was to examine whether ovariectomy (OVX) and mastication alter the regional variation of jaw bone characteristics. Sprague-Dawley female rats (6 months) were given a bilateral OVX or a sham operation (SHAM) (n = 10 for each group). After 2 months post-OVX, the hemi-mandible from each rat was dissected. A micro-computed tomography based mean, standard deviation (SD), the lower and upper 5th percentile (Low5 and High5) values of tissue mineral density (TMD) histograms were assessed for whole bone (WB), alveolar bone (AB), cortical bone (CB), and trabecular bone (TB) regions. Morphology of TB and periodontal ligament (PDL) was also obtained. Layers of AB were segmented up to 400 µm from the PDL. Mechanical properties at the tissue level were measured by nanoindentation at the same site by a single loading-unloading cycle of indentation in hydration. The AB and TB regions had significantly lower TMD Mean, Low5, and High5 but higher SD than the CB region for both sham and OVX groups (p < 0.01). TMD parameters of the OVX group rapidly increased up to 60 µm away from the PDL and were significantly higher than those of the sham group starting at 280 µm and farther in the CB region (p < 0.05). All values of morphological and nanoindentation parameters were not significantly different between sham and OVX groups (p > 0.06). Estrogen deficiency induced by OVX did not deteriorate bone characteristics including mineral density, morphology, and nanoindentation parameters in rat mandibles. Masticatory loading had an effect on the TMD parameters at the limited region of AB. These results provide insight into why osteoporosis-associated jaw bone fractures are extremely rare.


Asunto(s)
Densidad Ósea , Mandíbula , Animales , Femenino , Humanos , Mandíbula/diagnóstico por imagen , Ovariectomía , Ratas , Ratas Sprague-Dawley , Microtomografía por Rayos X
15.
Am J Physiol Renal Physiol ; 297(1): F95-F105, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19420108

RESUMEN

The RNA-binding protein human antigen R (HuR) participates in the posttranscriptional regulation of mRNAs bearing 3' AU-rich and U-rich elements, which HuR can stabilize under conditions of cellular stress. Using the LLC-PK(1) proximal tubule cell line model, we recently suggested a role for HuR in protecting kidney epithelia from injury during ischemic stress (Jeyaraj S, Dakhlallah D, Hill SR, Lee BS. J Biol Chem 280: 37957-37964, 2005; Jeyaraj SC, Dakhlallah D, Hill SR, Lee BS. Am J Physiol Renal Physiol 291: F1255-F1263, 2006). Here, we have extended this work to show that small interfering RNA-mediated suppression of HuR in LLC-PK(1) cells increased apoptosis during energy depletion, while overexpression of HuR diminished apoptosis. Suppression of HuR also resulted in diminished levels of key cell survival proteins such as Bcl-2 and Hsp70. Furthermore, rat kidneys were subjected in vivo to transient ischemia followed by varying periods of reperfusion. Ischemia and reperfusion (I/R) affected intensity and distribution of HuR in a nephron segment-specific manner. Cells of the proximal tubule, which are most sensitive to I/R injury, demonstrated a transient shift of HuR to the cytoplasm immediately following ischemia. Over a 14-day period following the onset of reperfusion, nuclear and total HuR protein gradually increased in cortical and medullary proximal tubules, but not in non-proximal tubule cells. HuR mRNA was expressed in two forms with alternate transcriptional start sites that increased over a 14-day I/R period, and in vitro studies suggest selective translatability of these two mRNAs. Baseline and I/R-stimulated levels of HuR mRNA did not parallel those of HuR protein, suggesting translational control of HuR expression, particularly in medullary proximal tubules. These findings suggest that alterations in distribution and expression of the antiaptotic protein HuR specifically in cells of the proximal tubule effect a protective mechanism during and following I/R injury in kidney.


Asunto(s)
Antígenos de Superficie/metabolismo , Riñón/metabolismo , Estabilidad del ARN/fisiología , Proteínas de Unión al ARN/metabolismo , Daño por Reperfusión/metabolismo , Animales , Antígenos de Superficie/genética , Apoptosis/fisiología , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Proteínas ELAV , Proteína 1 Similar a ELAV , Riñón/patología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Masculino , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/patología , Porcinos , Transfección
16.
Bone ; 43(5): 951-60, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18674650

RESUMEN

Tropomyosins are coiled-coil dimers that bind to the major groove of F-actin and regulate its accessibility to actin-modifying proteins. Although approximately 40 tropomyosin isoforms have been identified in mammals, they can broadly be classified into two groups based on protein size, that is, high molecular weight and low molecular weight isoforms. Osteoclasts, which undergo rounds of polarization and depolarization as they progress through the resorptive cycle, possess an unusual and highly dynamic actin cytoskeleton. To further define some of the actin regulatory proteins involved in osteoclast activity, we previously performed a survey of tropomyosin isoforms in resting and resorbing osteoclasts. Osteoclasts were found to express two closely related tropomyosins of the high molecular weight type, which are not expressed in monocytic and macrophage precursors. These isoforms, Tm-2 and Tm-3, are not strongly associated with actin-rich adhesion structures, but are instead distributed diffusely throughout the cell. In this study, we found that Tm-2/3 expression occurs late in osteoclastogenesis and continues to increase as cells mature. Knockdown of these isoforms via RNA interference results in flattening and increased spreading of osteoclasts, accompanied by diminished motility and altered resorptive capacity. In contrast, overexpression of Tm-2, but not Tm-3, caused morphological changes that include decreased spreading of the cells and induction of actin patches or stress fiber-like actin filaments, also with effects on motility and resorption. Suppression of Tm-2/3 or overexpression of Tm-2 resulted in altered distribution of gelsolin and microfilament barbed ends. These data suggest that high molecular weight tropomyosins are expressed in fusing osteoclasts to regulate the cytoskeletal scaffolding of these large cells, due at least in part by moderating accessibility of gelsolin to these microfilaments.


Asunto(s)
Osteoclastos , Isoformas de Proteínas , Tropomiosina , Citoesqueleto de Actina/metabolismo , Animales , Línea Celular , Movimiento Celular/fisiología , Forma de la Célula , Gelsolina/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Peso Molecular , Osteoclastos/citología , Osteoclastos/fisiología , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo
17.
Biomolecules ; 8(4)2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30467281

RESUMEN

Skeletal quantity and quality are determined by processes of bone modeling and remodeling, which are undertaken by cells that build and resorb bone as they respond to mechanical, hormonal, and other external and internal signals. As the sole bone resorptive cell type, osteoclasts possess a remarkably dynamic actin cytoskeleton that drives their function in this enterprise. Actin rearrangements guide osteoclasts' capacity for precursor fusion during differentiation, for migration across bone surfaces and sensing of their composition, and for generation of unique actin superstructures required for the resorptive process. In this regard, it is not surprising that myosins, the superfamily of actin-based motor proteins, play key roles in osteoclast physiology. This review briefly summarizes current knowledge of the osteoclast actin cytoskeleton and describes myosins' roles in osteoclast differentiation, migration, and actin superstructure patterning.


Asunto(s)
Actinas/metabolismo , Remodelación Ósea/genética , Miosinas/metabolismo , Osteoclastos/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Diferenciación Celular/genética , Humanos , Miosinas/genética
18.
J Mech Behav Biomed Mater ; 84: 99-107, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29754047

RESUMEN

The objective of this study was to examine relationships among a variety of bone characteristics, including volumetric, mineral density, geometric, dynamic mechanical analysis, and static fracture mechanical properties. As MYO9B is an unconventional myosin in bone cells responsible for normal skeletal growth, bone characteristics of wild-type (WT), heterozygous (HET), and MYO9B knockout (KO) mice groups were compared as an animal model to express different bone quantity and quality. Forty-five sex-matched 12-week-old mice were used in this study. After euthanization, femurs were isolated and scanned using microcomputed tomography (micro-CT) to assess bone volumetric, tissue mineral density (TMD), and geometric parameters. Then, a non-destructive dynamic mechanical analysis (DMA) was performed by applying oscillatory bending displacement on the femur. Finally, the same femur was subject to static fracture testing. KO group had significantly lower length, bone mineral density (BMD), bone mass and volume, dynamic and static stiffness, and strength than WT and HET groups (p < 0.019). On the other hand, TMD parameters of KO group were comparable with those of WT group. HET group showed volumetric, geometric, and mechanical properties similar to WT group, but had lower TMD (p < 0.014). Non-destructive micro-CT and DMA parameters had significant positive correlations with strength (p < 0.015) without combined effect of groups and sex on the correlations (p > 0.077). This comprehensive characterization provides a better understanding of interactive behavior between the tissue- and organ-level of the same femur. The current findings elucidate that MYO9B is responsible for controlling bone volume to determine the growth rate and fracture risk of bone.


Asunto(s)
Fémur/metabolismo , Técnicas de Inactivación de Genes , Fenómenos Mecánicos , Miosinas/deficiencia , Miosinas/genética , Animales , Fenómenos Biomecánicos , Densidad Ósea/genética , Fémur/fisiología , Ratones
19.
Sci Rep ; 7(1): 7603, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790434

RESUMEN

Osteoclasts begin as mononuclear cells that fuse to form multinuclear cells able to resorb bone. The mechanisms that regulate all the steps of osteoclast differentiation are not entirely known. MYO10, an unconventional myosin, has previously been shown in mature osteoclasts to play a role in attachment and podosome positioning. We determined that MYO10 is also expressed early during osteoclast differentiation. Loss of MYO10 expression in osteoclast precursors inhibits the ability of mononuclear osteoclasts to fuse into multinuclear osteoclasts. Expression of Nfatc1, Dc-stamp, Ctsk, and ß 3 integrin is reduced in the osteoclasts with reduced MYO10 expression. A slight reduction in the osteoclasts ability to migrate, as well as a reduction in SMAD 1/5/8 phosphorylation are also noted with reduced MYO10 expression. Interestingly we also detected a change in the ability of the osteoclast precursors to form tunneling nanotubes (TNTs), which suggests that MYO10 may regulate the presence of TNTs through its interaction with the cytoskeletal proteins.


Asunto(s)
Resorción Ósea/genética , Fémur/metabolismo , Miosinas/genética , Osteoclastos/metabolismo , Podosomas/metabolismo , Tibia/metabolismo , Animales , Resorción Ósea/metabolismo , Resorción Ósea/patología , Catepsina K/genética , Catepsina K/metabolismo , Diferenciación Celular , Fusión Celular , Movimiento Celular , Fémur/patología , Regulación de la Expresión Génica , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Miosinas/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Osteoclastos/patología , Fosforilación , Podosomas/ultraestructura , Transducción de Señal , Proteínas Smad/genética , Proteínas Smad/metabolismo , Tibia/patología
20.
J Bone Miner Res ; 32(10): 2103-2115, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28585695

RESUMEN

The Ras homolog A (RhoA) subfamily of Rho guanosine triphosphatases (GTPases) regulates actin-based cellular functions in bone such as differentiation, migration, and mechanotransduction. Polymorphisms or genetic ablation of RHOA and some of its regulatory guanine exchange factors (GEFs) have been linked to poor bone health in humans and mice, but the effects of RhoA-specific GTPase-activating proteins (GAPs) on bone quality have not yet been identified. Therefore, we examined the consequences of RhoGAP Myo9b gene knockout on bone growth, phenotype, and cellular activity. Male and female mice lacking both alleles demonstrated growth retardation and decreased bone formation rates during early puberty. These mice had smaller, weaker bones by 4 weeks of age, but only female KOs had altered cellular numbers, with fewer osteoblasts and more osteoclasts. By 12 weeks of age, bone quality in KOs worsened. In contrast, 4-week-old heterozygotes demonstrated bone defects that resolved by 12 weeks of age. Throughout, Myo9b ablation affected females more than males. Osteoclast activity appeared unaffected. In primary osteogenic cells, Myo9b was distributed in stress fibers and focal adhesions, and its absence resulted in poor spreading and eventual detachment from culture dishes. Similarly, MC3T3-E1 preosteoblasts with transiently suppressed Myo9b levels spread poorly and contained decreased numbers of focal adhesions. These cells also demonstrated reduced ability to undergo IGF-1-induced spreading or chemotaxis toward IGF-1, though responses to PDGF and BMP-2 were unaffected. IGF-1 receptor (IGF1R) activation was normal in cells with diminished Myo9b levels, but the activated receptor was redistributed from stress fibers and focal adhesions into nuclei, potentially affecting receptor accessibility and gene expression. These results demonstrate that Myo9b regulates a subset of RhoA-activated processes necessary for IGF-1 responsiveness in osteogenic cells, and is critical for normal bone formation in growing mice. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Desarrollo Óseo , Factor I del Crecimiento Similar a la Insulina/farmacología , Miosinas/metabolismo , Osteoblastos/metabolismo , Animales , Fenómenos Biomecánicos , Desarrollo Óseo/efectos de los fármacos , Hueso Esponjoso/metabolismo , Hueso Esponjoso/patología , Hueso Esponjoso/fisiopatología , Adhesión Celular , Línea Celular , Quimiotaxis , Fémur/metabolismo , Fémur/patología , Fémur/fisiopatología , Técnicas de Silenciamiento del Gen , Ratones Endogámicos C57BL , Ratones Noqueados , Miosinas/deficiencia , Osteoblastos/efectos de los fármacos , Ratas , Maduración Sexual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA