Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(6): 1269-1274, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115698

RESUMEN

Residential solid fuel use contributes to degraded indoor and ambient air quality and may affect global surface temperature. However, the potential for national-scale cookstove intervention programs to mitigate the latter issues is not yet well known, owing to the spatial heterogeneity of aerosol emissions and impacts, along with coemitted species. Here we use a combination of atmospheric modeling, remote sensing, and adjoint sensitivity analysis to individually evaluate consequences of a 20-y linear phase-out of cookstove emissions in each country with greater than 5% of the population using solid fuel for cooking. Emissions reductions in China, India, and Ethiopia contribute to the largest global surface temperature change in 2050 [combined impact of -37 mK (11 mK to -85 mK)], whereas interventions in countries less commonly targeted for cookstove mitigation such as Azerbaijan, Ukraine, and Kazakhstan have the largest per cookstove climate benefits. Abatement in China, India, and Bangladesh contributes to the largest reduction of premature deaths from ambient air pollution, preventing 198,000 (102,000-204,000) of the 260,000 (137,000-268,000) global annual avoided deaths in 2050, whereas again emissions in Ukraine and Azerbaijan have the largest per cookstove impacts, along with Romania. Global cookstove emissions abatement results in an average surface temperature cooling of -77 mK (20 mK to -278 mK) in 2050, which increases to -118 mK (-11 mK to -335 mK) by 2100 due to delayed CO2 response. Health impacts owing to changes in ambient particulate matter with an aerodynamic diameter of 2.5 µm or less (PM2.5) amount to ∼22.5 million premature deaths prevented between 2000 and 2100.

2.
Faraday Discuss ; 200: 397-412, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28598475

RESUMEN

The African continent is undergoing immense social and economic change, particularly regarding population growth and urbanization, where the urban population in Africa is anticipated to increase by a factor of 3 over the next 40 years. To understand the potential health impacts from this demographical shift and design efficient emission mitigation strategies, we used improved Africa-specific emissions that account for inefficient combustion sources for a number of sectors such as transportation, household energy generation, waste burning, and home heating and cooking. When these underrepresented emissions sources are combined with the current estimates of emissions in Africa, ambient particulate matter concentrations from present-day anthropogenic activity contribute to 13 210 annual premature deaths, with the largest contributions (38%) coming from residential emissions. By scaling both the population and the emissions for projected national-scale levels of growth, the predicted health impact grows to approximately 78 986 annual premature deaths by 2030 with 45% now resulting from emissions related to energy combustion. In order to mitigate this resulting increase in premature deaths, three scenarios have been developed which reduce sector-specific future emissions based on prior targets for technological improvements and emission controls in transportation, energy production and residential activities. These targeted potential mitigation strategies can avoid up to 37% of the estimated annual premature deaths by 2030 with the largest opportunity being a reduction of 10 868 annual deaths from switching half of the energy generation in South Africa to renewable technologies.

3.
Environ Sci Technol ; 49(7): 4335-44, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25730303

RESUMEN

Recent Global Burden of Disease (GBD) assessments estimated that outdoor fine-particulate matter (PM2.5) is a causal factor in over 5% of global premature deaths. PM2.5 is produced by a variety of direct and indirect, natural and anthropogenic processes that complicate PM2.5 management. This study develops a proof-of-concept method to quantify the effects on global premature mortality of changes to PM2.5 precursor emissions. Using the adjoint of the GEOS-Chem chemical transport model, we calculated sensitivities of global PM2.5-related premature mortality to emissions of precursor gases (SO2, NOx, NH3) and carbonaceous aerosols. We used a satellite-derived ground-level PM2.5 data set at approximately 10 × 10 km(2) resolution to better align the exposure with population density. We used exposure-response functions from the GBD project to relate mortality to exposure in the adjoint calculation. The response of global mortality to changes in local anthropogenic emissions varied spatially by several orders of magnitude. The largest reductions in mortality for a 1 kg km(-2) yr(-1) decrease in emissions were for ammonia and carbonaceous aerosols in Eastern Europe. The greatest reductions in mortality for a 10% decrease in emissions were found for secondary inorganic sources in East Asia. In general, a 10% decrease in SO2 emissions was the most effective source to control, but regional exceptions were found.


Asunto(s)
Modelos Teóricos , Mortalidad , Material Particulado/efectos adversos , Material Particulado/análisis , Aerosoles/análisis , Amoníaco/análisis , Exposición a Riesgos Ambientales/efectos adversos , Europa Oriental , Asia Oriental , Gases , Humanos , Modelos Químicos , Óxidos de Nitrógeno/análisis , Densidad de Población , Sulfatos/análisis
4.
Sci Total Environ ; 448: 189-96, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23040176

RESUMEN

This paper explores technologies currently expanding the physical scope of air pollution monitoring and their potential contributions to the assessment of sustainable development. This potential lies largely in the ability of these technologies to address issues typically on the fringe of the air pollution agenda. Air pollution monitoring tends to be primarily focused on human health, and largely neglects other aspects of sustainable development. Sensor networks, with their relatively inexpensive monitoring nodes, allow for monitoring with finer spatiotemporal resolution. This resolution can support more conclusive studies of air pollution's effect on socio-ecological justice and human quality of life. Satellite observation of air pollution allows for wider geographical scope, and in doing so can facilitate studies of air pollution's effects on natural capital and ecosystem resilience. Many air pollution-related aspects of the sustainability of development in human systems are not being given their due attention. Opportunities exist for air pollution monitoring to attend more to these issues. Improvements to the resolution and scale of monitoring make these opportunities realizable.


Asunto(s)
Contaminación del Aire/análisis , Conservación de los Recursos Naturales/tendencias , Monitoreo del Ambiente/métodos , Humanos , Calidad de Vida , Comunicaciones por Satélite
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA