Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38791578

RESUMEN

Nanoparticles and nanomaterials are important, because they are potentially applicable to energy, storage, bioimaging, biosensors, catalysts, nanomedicine, batteries, solar energy, bioenergy, and so on (Figure 1) [...].


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Nanomedicina/métodos , Técnicas Biosensibles/métodos , Nanotecnología/métodos , Humanos , Energía Solar , Nanopartículas/química
2.
Molecules ; 29(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38893384

RESUMEN

Analysis of the heavy fractions in crude oil has been important in petroleum industries. It is well known that heavy fractions such as vacuum gas oils (VGOs) include heteroatoms, of which sulfur and nitrogen are often characterized in many cases. We conducted research regarding the molecular species analysis of VGOs. Further refine processes using VGOs are becoming important when considering carbon recycling. In this work, we attempted to classify compounds within VGOs provided by Kuwait Institute for Scientific Research. Two VGOs were priorly distillated from Kuwait Export crude and Lower Fars crude. Quantitative analysis was performed mainly using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOFMS). MALDI-TOF-MS has been developed for analyzing high-molecular-weight compounds such as polymer and biopolymers. As matrix selection is one of the most important aspects in MALDI-TOFMS, the careful selection of a matrix was firstly evaluated, followed by analysis using a Kendrick plot with nominal mass series (z*). The objective was to evaluate if this work could provide an effective classification of VGOs compounds. The Kendrick plot is a well-known method for processing mass data. The difference in the Kendrick mass defect (KMD) between CnH2n-14S and CnH2n-20O is only 0.0005 mass units, which makes it difficult in general to distinguish these compounds. However, since the z* value showed effective differences during the classification of these compounds, qualitative analysis could be possible. The analysis using nominal mass series showed the potential to be used as an effective method in analyzing heavy fractions.

3.
Langmuir ; 39(43): 15338-15342, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37856331

RESUMEN

Fluorescent nanoparticles used in biomedical applications should be stable in their colloidal form in aqueous media and possess a high quantum yield (QY). We report ultrasmall Ln2O3 (Ln = Eu, Tb, or Dy) nanoparticle colloids with high QYs in aqueous media. The nanoparticles are grafted with hydrophilic and biocompatible poly(acrylic acid) (PAA) to ensure colloidal stability and biocompatibility and with organic photosensitizer 2,6-pyridinedicarboxylic acid (PDA) for achieving a high QY. The PAA/PDA-Ln2O3 nanoparticle colloids were nearly monodispersed and ultrasmall (particle diameter: ∼2 nm). They exhibited excellent colloidal stability with no precipitation after synthesis (>1.5 years) in aqueous media, very low cellular toxicity, and very high absolute QYs of 87.6, 73.6, and 2.8% for Ln = Eu, Tb, and Dy, respectively. These QYs are the highest reported so far for lanthanides in aqueous media. Therefore, the results suggest their high potential as sensitive optical or imaging probes in biomedical applications.

4.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163714

RESUMEN

Owing to a higher demand for glucosamine (GlcN) in metabolic processes in tumor cells than in normal cells (i.e., GlcN effects), tumor imaging in magnetic resonance imaging (MRI) can be highly improved using GlcN-conjugated MRI contrast agents. Here, GlcN was conjugated with polyacrylic acid (PAA)-coated ultrasmall gadolinium oxide nanoparticles (UGONs) (davg = 1.76 nm). Higher positive (brighter or T1) contrast enhancements at various organs including tumor site were observed in human brain glioma (U87MG) tumor-bearing mice after the intravenous injection of GlcN-PAA-UGONs into their tail veins, compared with those obtained with PAA-UGONs as control, which were rapidly excreted through the bladder. Importantly, the contrast enhancements of the GlcN-PAA-UGONs with respect to those of the PAA-UGONs were the highest in the tumor site owing to GlcN effects. These results demonstrated that GlcN-PAA-UGONs can serve as excellent T1 MRI contrast agents in tumor imaging via GlcN effects.


Asunto(s)
Nanopartículas , Neoplasias , Resinas Acrílicas , Animales , Medios de Contraste , Gadolinio , Glucosamina , Imagen por Resonancia Magnética/métodos , Ratones
5.
Molecules ; 25(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150823

RESUMEN

The study of ultra-small paramagnetic gadolinium oxide (Gd2O3) nanoparticles (NPs) as in vivo positive (T1) magnetic resonance imaging (MRI) contrast agents is one of the most attractive fields in nanomedicine. The performance of the Gd2O3 NP imaging agents depends on the surface-coating materials. In this study, poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was used as a surface-coating polymer. The PMVEMA-coated paramagnetic ultra-small Gd2O3 NPs with an average particle diameter of 1.9 nm were synthesized using the one-pot polyol method. They exhibited excellent colloidal stability in water and good biocompatibility. They also showed a very high longitudinal water proton spin relaxivity (r1) value of 36.2 s-1mM-1 (r2/r1 = 2.0; r2 = transverse water proton spin relaxivity) under a 3.0 tesla MR field which is approximately 10 times higher than the r1 values of commercial molecular contrast agents. High positive contrast enhancements were observed in in vivo T1 MR images after intravenous administration of the NP solution sample, demonstrating its potential as a T1 MRI contrast agent.


Asunto(s)
Materiales Biocompatibles Revestidos , Gadolinio , Imagen por Resonancia Magnética , Anhídridos Maleicos , Nanopartículas del Metal , Polivinilos , Animales , Línea Celular Tumoral , Supervivencia Celular , Fenómenos Químicos , Materiales Biocompatibles Revestidos/química , Medios de Contraste , Gadolinio/química , Imagen por Resonancia Magnética/métodos , Anhídridos Maleicos/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Ratones , Estructura Molecular , Tamaño de la Partícula , Polivinilos/química , Relación Señal-Ruido , Análisis Espectral
6.
Bioconjug Chem ; 29(11): 3614-3625, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30383368

RESUMEN

In this study, we designed and synthesized a highly stable manganese (Mn2+)-based hepatobiliary complex by tethering an ethoxybenzyl (EOB) moiety with an ethylenediaminetetraacetic acid (EDTA) coordination cage as an alternative to the well-established hepatobiliary gadolinium (Gd3+) chelates and evaluated its usage as a T1 hepatobiliary magnetic resonance imaging (MRI) contrast agent (CA). This new complex exhibits higher r1 relaxivity (2.3 mM-1 s-1) than clinically approved Mn2+-based hepatobiliary complex Mn-DPDP (1.6 mM-1 s-1) at 1.5 T. Mn-EDTA-EOB shows much higher kinetic inertness than that of clinically approved Gd3+-based hepatobiliary MRI CAs, such as Gd-DTPA-EOB and Gd-BOPTA. In addition, in vivo biodistribution and MRI enhancement patterns of this new Mn2+ chelate are comparable to those of Gd3+-based hepatobiliary MRI CAs. The diagnostic efficacy of the new complex was demonstrated by its enhanced tumor detection sensitivity in a liver cancer model using in vivo MRI.


Asunto(s)
Sistema Biliar/diagnóstico por imagen , Medios de Contraste/síntesis química , Ácido Edético/química , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Manganeso/química , Animales , Línea Celular , Quelantes/química , Quelantes/farmacocinética , Medios de Contraste/química , Ácido Edético/farmacocinética , Femenino , Gadolinio DTPA/química , Xenoinjertos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa Bombardeada por Átomos Veloces
7.
J Nanosci Nanotechnol ; 18(9): 6333-6338, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29677792

RESUMEN

D-glucuronic acid-coated ultrasmall chromium oxide (Cr2O3) nanoparticles were synthesized by a one-pot polyol method and their relaxometric and optical properties were investigated. The as-synthesized D-glucuronic acid-coated nanoparticles were amorphous owing to ultrasmall particle diameters (davg = 2.0 nm), whereas orthorhombic Cr2O3 nanoparticles with two size groups (davg = 3.6 and 5.7 nm) were observed after thermogravimetric analysis (900 °C) as a result of particle growth. The nanoparticles exhibited size-dependent UV-visible absorption maxima at 238, 274, and 372 nm with increasing particle diameter, corresponding to band gaps of 5.13, 4.45, and 3.28 eV, respectively. D-glucuronic acid-coated ultrasmall Cr2O3 nanoparticles revealed low water proton relaxivities of r1 = 0.05 s-1mM-1 and r2 = 0.20 s-1mM-1, consistent with the antiferromagnetic property of Cr2O3. They showed good biocompatibility up to 500 µM of Cr.

8.
J Nanosci Nanotechnol ; 17(4): 2423-430, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29648433

RESUMEN

Mixed Zn(II)/Gd(III) oxide nanoparticles (~8 mole%Zn) with d(avg) of 2.1 nm were synthesized. The D-glucuronic acid coated Zn(II)/Gd(III) oxide nanoparticles showed a longitudinal water proton relaxivity (r1) of 12.3 s⁻¹mM⁻¹ with r2/r1 = 1.1, corresponding to an ideal condition for T1 MRI contrast agent. We attribute this to reduced magnetization of the mixed nanoparticles owing to non-magnetic Zn in the nanoparticles. Their effectiveness as a T1 MRI contrast agent was confirmed by acquiring In Vivo T1 MR images of a mouse after intravenous injection.

9.
J Nanosci Nanotechnol ; 16(3): 2433-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27455652

RESUMEN

The gadolinium oxide (Gd2O3) nanoparticles are well-known potential candidates for a positive magnetic resonance imaging (MRI) contrast agent owing to their large longitudinal water proton relaxivity (r1) value with r2/r1 ratio close to one (r2 = transverse water proton relaxivity). In addition they may be used to sense metal ions because their r1 and r2 values can be altered in the presence of metal ions. This may allow us to study metabolic processes involving metal ions and to diagnose disease related to abnormal concentrations of metal ions in the body in a non-invasive way. In this study ultrasmall Gd2O3 nanoparticles were for the first time applied to non-specifically sense Zn2+ ions in aqueous solution. We explored this by measuring r1 and r2 values in the presence of Zn2+ ions in solution.


Asunto(s)
Medios de Contraste , Gadolinio/química , Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal , Zinc/análisis , Microscopía Electrónica de Transmisión , Difracción de Polvo , Espectroscopía Infrarroja por Transformada de Fourier
10.
Nanotechnology ; 26(36): 365102, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26291827

RESUMEN

A new type of dual-mode T1 and T2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd(3+) ((8)S7/2) plays an important role in T1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy(3+) ((6)H15/2) has the potential to be used in T2 MRI contrast agents because of its very large total electron magnetic moment: among lanthanide oxide nanoparticles, Dy2O3 nanoparticles have the largest magnetic moments at room temperature. Using these properties of Gd(3+) and Dy(3+) and their oxide nanoparticles, ultrasmall mixed gadolinium-dysprosium oxide (GDO) nanoparticles were synthesized and their potential to act as a dual-mode T1 and T2 MRI contrast agent was investigated in vitro and in vivo. The D-glucuronic acid coated GDO nanoparticles (davg = 1.0 nm) showed large r1 and r2 values (r2/r1 ≈ 6.6) and as a result clear dose-dependent contrast enhancements in R1 and R2 map images. Finally, the dual-mode imaging capability of the nanoparticles was confirmed by obtaining in vivo T1 and T2 MR images.

11.
J Nanosci Nanotechnol ; 15(9): 7311-6, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26716328

RESUMEN

T2 MRI contrast agents cannot be synthesized by using molecules but nanoparticles because appreciable magnetic moments at room temperature are needed. Recently, some of lanthanide (Ln) oxide nanoparticles have shown decent magnetic moments at room temperature and even at ultrasmall particle diameters. In this study, we explored D-glucuronic acid coated Ln2O3 nanoparticles (Ln = Ho and Er) with ultrasmall particle diameters. They showed decent magnetic moments at room temperature and as a result, appreciable transverse water proton relaxivities (r2s) at 1.5 tesla MR field. Clear dose-dependent contrast enhancements in R2 map images were observed in both samples. These results showed that D-glucuronic acid coated Ln2O3 nanoparticles (Ln = Ho and Er) would be potential T2 MRI contrast agents at high MR fields.


Asunto(s)
Erbio/química , Ácido Glucurónico/química , Holmio/química , Nanopartículas del Metal/química , Óxidos/química , Medios de Contraste , Magnetismo , Protones , Agua
12.
Sci Technol Adv Mater ; 16(5): 055003, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27877838

RESUMEN

Water-soluble and biocompatible D-glucuronic acid coated Na2WO4 and BaCO3 nanoparticles were synthesized for the first time to be used as x-ray computed tomography (CT) contrast agents. Their average particle diameters were 3.2 ± 0.1 and 2.8 ± 0.1 nm for D-glucuronic acid coated Na2WO4 and BaCO3 nanoparticles, respectively. All the nanoparticles exhibited a strong x-ray attenuation. In vivo CT images were obtained after intravenous injection of an aqueous sample suspension of D-glucuronic acid coated Na2WO4 nanoparticles, and positive contrast enhancements in the kidney were clearly shown. These findings indicate that the nanoparticles reported in this study may be promising CT contrast agents.

13.
Phys Chem Chem Phys ; 16(37): 19866-73, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25123195

RESUMEN

The dependence of longitudinal (r1) and transverse (r2) water proton relaxivities of ultrasmall gadolinium oxide (Gd2O3) nanoparticles on the surface coating ligand-size was investigated. Both r1 and r2 values decreased with increasing ligand-size. We attributed this to the ligand-size effect. In addition the effectiveness of d-glucuronic acid-coated ultrasmall Gd2O3 nanoparticles as T1 magnetic resonance imaging (MRI) contrast agents was confirmed by measuring the in vitro cytotoxicity and using in vivo T1 MR images in a mouse in a 1.5 T MR field.


Asunto(s)
Medios de Contraste/química , Gadolinio/química , Nanopartículas del Metal/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/toxicidad , Ácido Glucurónico/química , Riñón/diagnóstico por imagen , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Nanopartículas del Metal/toxicidad , Ratones , Tamaño de la Partícula , Radiografía
14.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251140

RESUMEN

Magnetite nanoparticles (Fe3O4 NPs) have been intensively investigated because of their potential biomedical applications due to their high saturation magnetization. In this study, core-shell Fe3O4@C NPs (core = Fe3O4 NPs and shell = amorphous carbons, davg = 35.1 nm) were synthesized in an aqueous solution. Carbon coating terminated with hydrophilic -OH and -COOH groups imparted excellent biocompatibility and hydrophilicity to the NPs, making them suitable for biomedical applications. The Fe3O4@C NPs exhibited ideal relaxometric properties for T2 magnetic resonance imaging (MRI) contrast agents (i.e., high transverse and negligible longitudinal water proton spin relaxivities), making them exclusively induce only T2 relaxation. Their T2 MRI performance as contrast agents was confirmed in vivo by measuring T2 MR images in mice before and after intravenous injection.

15.
RSC Adv ; 14(6): 3647-3658, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38268539

RESUMEN

Owing to their theranostic properties, cerium oxide (CeO2) nanoparticles have attracted considerable attention for their key applications in nanomedicine. In this study, ultrasmall CeO2 nanoparticles (particle diameter = 1-3 nm) as X-ray contrast agents with an antioxidant effect were investigated for the first time. The nanoparticles were coated with hydrophilic and biocompatible poly(acrylic acid) (PAA) and poly(acrylic acid-co-maleic acid) (PAAMA) to ensure satisfactory colloidal stability in aqueous media and low cellular toxicity. The synthesized nanoparticles were characterized using high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, thermogravimetric analysis, dynamic light scattering, cell viability assay, photoluminescence spectroscopy, and X-ray computed tomography (CT). Their potential as X-ray contrast agents was demonstrated by measuring phantom images and in vivo CT images in mice injected intravenously and intraperitoneally. The X-ray attenuation of these nanoparticles was greater than that of the commercial X-ray contrast agent Ultravist and those of larger CeO2 nanoparticles reported previously. In addition, they exhibited an antioxidant effect for the removal of hydrogen peroxide. The results confirmed that the PAA- and PAAMA-coated ultrasmall CeO2 nanoparticles demonstrate potential as highly sensitive radioprotective or theranostic X-ray contrast agents.

16.
J Nanosci Nanotechnol ; 13(11): 7214-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24245232

RESUMEN

The water-soluble and biocompatible D-glucuronic acid coated Eu(OH)3 nanorods (average thickness x average length = 9.0 x 118.3 nm) have been prepared in one-pot synthesis. The D-glucuronic acid coated Eu(OH)3 nanorods showed a strong fluorescence at approximately 600 nm with a narrow emission band width. A cytotoxicity test by using DU145 cells showed that D-glucuronic acid coated Eu(OH)3 nanorods are not toxic up to 100 microM, making them a promising candidate for biomedical applications such as fluorescent imaging. The minimum Eu concentration needed for a conventional confocal imaging was estimated to be approximately 0.1 mM. Therefore, D-glucuronic acid coated Eu(OH)3 nanorods can be applied to fluorescent imaging. However, a very tiny magnetization of approximately 1.2 emu/g at room temperature and at an applied field of 5 tesla was observed. As a result, very small r1 and r2 water proton relaxivities were estimated, implying that surface coated Eu(OH)3 nanorods are not sufficient for MRI contrast agents.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Hidróxidos/toxicidad , Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal/toxicidad , Nanotubos/toxicidad , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/toxicidad , Medios de Contraste/síntesis química , Medios de Contraste/toxicidad , Europio , Humanos , Hidróxidos/síntesis química , Ensayo de Materiales , Nanopartículas del Metal/química , Nanotubos/química
17.
Biosensors (Basel) ; 13(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37504130

RESUMEN

Hemagglutination assay has been used for blood typing and detecting viruses, thus applicable for the diagnosis of infectious diseases, including COVID-19. Therefore, the development of microfluidic devices for fast detection of hemagglutination is on-demand for point-of-care diagnosis. Here, we present a way to detect hemagglutination in 3D microfluidic devices via optical absorbance (optical density, OD) characterization. 3D printing is a powerful way to build microfluidic structures for diagnostic devices. However, mixing liquid in microfluidic chips is difficult due to laminar flow, which hampers practical applications such as antigen-antibody mixing. To overcome the issue, we fabricated 3D microfluidic chips with embedded microchannel and microwell structures to induce hemagglutination between red blood cells (RBCs) and antibodies. We named it a 3D microtrap chip. We also established an automated measurement system which is an integral part of diagnostic devices. To do this, we developed a novel way to identify RBC agglutination and non-agglutination via the OD difference. By adapting a 3D-printed aperture to the microtrap chip, we obtained a pure absorbance signal from the microchannels by eliminating the background brightness of the microtrap chip. By investigating the underlying optical physics, we provide a 3D device platform for detecting hemagglutination.


Asunto(s)
COVID-19 , Hemaglutinación , Humanos , Microfluídica , Eritrocitos , Dispositivos Laboratorio en un Chip
18.
Pharmaceutics ; 15(6)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37376193

RESUMEN

In recent decades, magnetic nanoparticles (MNPs) have attracted considerable research interest as versatile substances for various biomedical applications, particularly as contrast agents in magnetic resonance imaging (MRI). Depending on their composition and particle size, most MNPs are either paramagnetic or superparamagnetic. The unique, advanced magnetic properties of MNPs, such as appreciable paramagnetic or strong superparamagnetic moments at room temperature, along with their large surface area, easy surface functionalization, and the ability to offer stronger contrast enhancements in MRI, make them superior to molecular MRI contrast agents. As a result, MNPs are promising candidates for various diagnostic and therapeutic applications. They can function as either positive (T1) or negative (T2) MRI contrast agents, producing brighter or darker MR images, respectively. In addition, they can function as dual-modal T1 and T2 MRI contrast agents, producing either brighter or darker MR images, depending on the operational mode. It is essential that the MNPs are grafted with hydrophilic and biocompatible ligands to maintain their nontoxicity and colloidal stability in aqueous media. The colloidal stability of MNPs is critical in order to achieve a high-performance MRI function. Most of the MNP-based MRI contrast agents reported in the literature are still in the developmental stage. With continuous progress being made in the detailed scientific research on them, their use in clinical settings may be realized in the future. In this study, we present an overview of the recent developments in the various types of MNP-based MRI contrast agents and their in vivo applications.

19.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37111359

RESUMEN

Magnetic resonance imaging (MRI) is increasingly used to diagnose focal and diffuse liver disorders. Despite their enhanced efficacy, liver-targeted gadolinium-based contrast agents (GBCAs) raise safety concerns owing to the release of toxic Gd3+ ions. A π-conjugated macrocyclic chelate, Mn-NOTA-NP, was designed and synthesized as a non-gadolinium alternative for liver-specific MRI. Mn-NOTA-NP exhibits an r1 relaxivity of 3.57 mM-1 s-1 in water and 9.01 mM-1 s-1 in saline containing human serum albumin at 3 T, which is significantly greater than the clinically utilized Mn2+-based hepatobiliary drug, Mn-DPDP (1.50 mM-1 s-1), and comparable with that of GBCAs. Furthermore, the in vivo biodistribution and MRI enhancement patterns of Mn-NOTA-NP were similar to those of the Gd3+-based hepatobiliary agent, Gd-DTPA-EOB. Additionally, a 0.05 mmol/kg dose of Mn-NOTA-NP facilitated high-sensitivity tumor detection with tumor signal enhancement in a liver tumor model. Ligand-docking simulations further indicated that Mn-NOTA-NP differed from other hepatobiliary agents in their interactions with several transporter systems. Collectively, we demonstrated that Mn-NOTA-NP could be a new liver-specific MRI contrast agent.

20.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37895934

RESUMEN

X-ray computed tomography (CT) contrast agents offer extremely valuable tools and techniques in diagnostics via contrast enhancements. Heavy metal-based nanoparticles (NPs) can provide high contrast in CT images due to the high density of heavy metal atoms with high X-ray attenuation coefficients that exceed that of iodine (I), which is currently used in hydrophilic organic CT contrast agents. Nontoxicity and colloidal stability are vital characteristics in designing heavy metal-based NPs as CT contrast agents. In addition, a small particle size is desirable for in vivo renal excretion. In vitro phantom imaging studies have been performed to obtain X-ray attenuation efficiency, which is a critical parameter for CT contrast agents, and the imaging performance of CT contrast agents has been demonstrated via in vivo experiments. In this review, we focus on the in vitro and in vivo studies of various heavy metal-based NPs in pure metallic or chemical forms, including Au, Pt, Pd, Ag, Ce, Gd, Dy, Ho, Yb, Ta, W, and Bi, and provide an outlook on their use as high-performance CT contrast agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA