Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Assist Reprod Genet ; 40(5): 1197-1213, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37012451

RESUMEN

INTRODUCTION: Morphokinetic analysis using a closed time-lapse monitoring system (EmbryoScope + ™) provides quantitative metrics of meiotic progression and cumulus expansion. The goal of this study was to use a physiologic aging mouse model, in which egg aneuploidy levels increase, to determine whether there are age-dependent differences in morphokinetic parameters of oocyte maturation. METHODS: Denuded oocytes and intact cumulus-oocyte complexes (COCs) were isolated from reproductively young and old mice and in vitro matured in the EmbryoScope + ™. Morphokinetic parameters of meiotic progression and cumulus expansion were evaluated, compared between reproductively young and old mice, and correlated with egg ploidy status. RESULTS: Oocytes from reproductively old mice were smaller than young counterparts in terms of GV area (446.42 ± 4.15 vs. 416.79 ± 5.24 µm2, p < 0.0001) and oocyte area (4195.71 ± 33.10 vs. 4081.62 ± 41.04 µm2, p < 0.05). In addition, the aneuploidy incidence was higher in eggs with advanced reproductive age (24-27% vs. 8-9%, p < 0.05). There were no differences in the morphokinetic parameters of oocyte maturation between oocytes from reproductively young and old mice with respect to time to germinal vesicle breakdown (GVBD) (1.03 ± 0.03 vs. 1.01 ± 0.04 h), polar body extrusion (PBE) (8.56 ± 0.11 vs. 8.52 ± 0.15 h), duration of meiosis I (7.58 ± 0.10 vs. 7.48 ± 0.11 h), and kinetics of cumulus expansion (0.093 ± 0.002 vs. 0.089 ± 0.003 µm/min). All morphokinetic parameters of oocyte maturation were similar between euploid and aneuploid eggs irrespective of age. CONCLUSION: There is no association between age or ploidy and the morphokinetics of mouse oocyte in vitro maturation (IVM). Future studies are needed to evaluate whether there is an association between morphokinetic dynamics of mouse IVM and embryo developmental competence.


Asunto(s)
Envejecimiento , Meiosis , Oocitos , Animales , Ratones , Ploidias , Femenino , Oocitos/citología , Imagen de Lapso de Tiempo , Cinética
2.
Biol Reprod ; 107(4): 1097-1112, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35810327

RESUMEN

Meiotic maturation and cumulus expansion are essential for the generation of a developmentally competent gamete, and both processes can be recapitulated in vitro. We used a closed time-lapse incubator (EmbryoScope+™) to establish morphokinetic parameters of meiotic progression and cumulus expansion in mice and correlated these outcomes with egg ploidy. The average time to germinal vesicle breakdown (GVBD), time to first polar body extrusion (PBE), and duration of meiosis I were 0.91 ± 0.01, 8.82 ± 0.06, and 7.93 ± 0.06 h, respectively. The overall rate of cumulus layer expansion was 0.091 ± 0.002 µm/min, and the velocity of expansion peaked during the first 8 h of in vitro maturation (IVM) and then slowed. IVM of oocytes exposed to Nocodazole, a microtubule disrupting agent, and cumulus oocyte complexes (COCs) to 4-methylumbelliferone, a hyaluronan synthesis inhibitor, resulted in a dose-dependent perturbation of morphokinetics, thereby validating the system. The incidence of euploidy following IVM was >90% for both denuded oocytes and intact COCs. No differences were observed between euploid and aneuploid eggs with respect to time to GVBD (0.90 ± 0.22 vs. 0.97 ± 0.19 h), time to PBE (8.89 ± 0.98 vs. 9.10 ± 1.42 h), duration of meiosis I (8.01 ± 0.91 vs. 8.13 ± 1.38 h), and overall rate and kinetics of cumulus expansion (0.089 ± 0.02 vs 0.088 ± 0.03 µm/min) (P > 0.05). These morphokinetic parameters provide novel quantitative and non-invasive metrics for the evaluation of meiotic maturation and cumulus expansion and will enable screening compounds that modulate these processes.


Asunto(s)
Células del Cúmulo , Técnicas de Maduración In Vitro de los Oocitos , Animales , Células del Cúmulo/metabolismo , Femenino , Ácido Hialurónico/metabolismo , Himecromona/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Meiosis , Ratones , Nocodazol , Oocitos/metabolismo
3.
Reproduction ; 164(1): F9-F20, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35521902

RESUMEN

The discovery of PLCZ1 nearly 20 years ago as the primary Ca2+ oscillation-inducing factor in the sperm of mammals represented a significant breakthrough in our quest to elucidate the molecules and pathways that promote egg activation during fertilization. The advent of the intracytoplasmic sperm injection (ICSI) technique, which made fertilization possible without sperm capacitation, acrosome reaction, and gamete fusion, strengthened the research that led to the discovery of PLCZ1 and became an essential clinical tool for humans. The use of ICSI combined with the detection of PLCZ1 expression and mutations in infertile patients established the fundamental role of PLCZ1 in human fertility while leading to the discovery of novel components of the perinuclear theca, the site of the residence of PLCZ1 in sperm before fertilization. Remarkably, the more extensive use of ICSI in species other than humans and mice revealed poor success and exposed gaps in our understanding of PLCZ1 release and/or activation. Similarly, fertilization using sperm from mouse models lacking Plcz1 has produced striking results whose true implications are yet to be determined. Nevertheless, answers to these unresolved questions will produce a complete picture of the adaptations and molecular players that mammalian species employ to ensure the success of the triggering event of embryo development that has linked generations since the beginning of times.


Asunto(s)
Oocitos , Inyecciones de Esperma Intracitoplasmáticas , Animales , Fertilización , Humanos , Masculino , Mamíferos/metabolismo , Ratones , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Espermatozoides/metabolismo
4.
Mol Cell ; 52(3): 325-39, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24095281

RESUMEN

Active metabolism regulates oocyte cell death via calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation of caspase-2, but the link between metabolic activity and CaMKII is poorly understood. Here we identify coenzyme A (CoA) as the key metabolic signal that inhibits Xenopus laevis oocyte apoptosis by directly activating CaMKII. We found that CoA directly binds to the CaMKII regulatory domain in the absence of Ca(2+) to activate CaMKII in a calmodulin-dependent manner. Furthermore, we show that CoA inhibits apoptosis not only in X. laevis oocytes but also in Murine oocytes. These findings uncover a direct mechanism of CaMKII regulation by metabolism and further highlight the importance of metabolism in preserving oocyte viability.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Coenzima A/metabolismo , Oocitos/metabolismo , Xenopus laevis/metabolismo , Animales , Apoptosis/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Caspasa 2/metabolismo , Supervivencia Celular/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Oocitos/crecimiento & desarrollo , Fosforilación/genética , Unión Proteica , Transducción de Señal , Activación Transcripcional , Xenopus laevis/crecimiento & desarrollo
5.
Development ; 144(16): 2914-2924, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28694258

RESUMEN

Activation of the egg by the sperm is the first, vital stage of embryogenesis. The sperm protein PLCζ has been proposed as the physiological agent that triggers the Ca2+ oscillations that normally initiate embryogenesis. Consistent with this, recombinant PLCζ induces Ca2+ oscillations in eggs and debilitating mutations in the PLCZ1 gene are associated with infertility in men. However, there has been no evidence that knockout of the gene encoding PLCζ abolishes the ability of sperm to induce Ca2+ oscillations in eggs. Here, we show that sperm derived from Plcz1-/- male mice fail to trigger Ca2+ oscillations in eggs, cause polyspermy and thus demonstrate that PLCζ is the physiological trigger of these Ca2+ oscillations. Remarkably, some eggs fertilized by PLCζ-null sperm can develop, albeit at greatly reduced efficiency, and after a significant time-delay. In addition, Plcz1-/- males are subfertile but not sterile, suggesting that in the absence of PLCζ, spontaneous egg activation can eventually occur via an alternative route. This is the first demonstration that in vivo fertilization without the normal physiological trigger of egg activation can result in offspring. PLCζ-null sperm now make it possible to resolve long-standing questions in fertilization biology, and to test the efficacy and safety of procedures used to treat human infertility.


Asunto(s)
Calcio/metabolismo , Desarrollo Embrionario/fisiología , Fosfoinositido Fosfolipasa C/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Desarrollo Embrionario/genética , Edición Génica , Masculino , Mamíferos , Ratones , Ratones Mutantes , Fosfoinositido Fosfolipasa C/genética , Espermatogénesis/genética , Espermatogénesis/fisiología
6.
Mol Hum Reprod ; 26(4): 228-239, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32119740

RESUMEN

Zinc dynamics are essential for oocyte meiotic maturation, egg activation, and preimplantation embryo development. During fertilisation and egg activation, the egg releases billions of zinc atoms (Zn2+) in an exocytotic event termed the 'zinc spark'. We hypothesised that this zinc transport and exocytosis is dependent upon the intracellular trafficking of cortical granules (CG) which requires myosin-actin-dependent motors. Treatment of mature mouse and human eggs with ML-7, a myosin light chain kinase inhibitor (MLCK), resulted in an 80% reduction in zinc spark intensity compared to untreated controls when activated with ionomycin. Moreover, CG migration towards the plasma membrane was significantly decreased in ML-7-treated eggs compared with controls when activated parthenogenetically with ionomycin. In sperm-induced fertilisation via intracytoplasmic sperm injection (ICSI), ML-7-treated mouse eggs exhibited decreased labile zinc intensity and cortical CG staining. Collectively, these data demonstrate that ML-7 treatment impairs zinc release from both murine and human eggs after activation, demonstrating that zinc exocytosis requires myosin light chain kinase activity. Further, these results provide additional support that zinc is likely stored and released from CGs. These data underscore the importance of intracellular zinc trafficking as a crucial component of egg maturation necessary for egg activation and early embryo development.


Asunto(s)
Exocitosis , Quinasa de Cadena Ligera de Miosina/metabolismo , Óvulo/metabolismo , Adulto , Animales , Azepinas , Femenino , Humanos , Técnicas In Vitro , Masculino , Ratones , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Naftalenos , Oogénesis , Óvulo/citología , Inyecciones de Esperma Intracitoplasmáticas
7.
Hum Mol Genet ; 25(5): 878-91, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26721930

RESUMEN

In mammals, sperm-oocyte fusion initiates Ca(2+) oscillations leading to a series of events called oocyte activation, which is the first stage of embryo development. Ca(2+) signaling is elicited by the delivery of an oocyte-activating factor by the sperm. A sperm-specific phospholipase C (PLCZ1) has emerged as the likely candidate to induce oocyte activation. Recently, PAWP, a sperm-born tryptophan domain-binding protein coded by WBP2NL, was proposed to serve the same purpose. Here, we studied two infertile brothers exhibiting normal sperm morphology but complete fertilization failure after intracytoplasmic sperm injection. Whole exomic sequencing evidenced a missense homozygous mutation in PLCZ1, c.1465A>T; p.Ile489Phe, converting Ile 489 into Phe. We showed the mutation is deleterious, leading to the absence of the protein in sperm, mislocalization of the protein when injected in mouse GV and MII oocytes, highly abnormal Ca(2+) transients and early embryonic arrest. Altogether these alterations are consistent with our patients' sperm inability to induce oocyte activation and initiate embryo development. In contrast, no deleterious variants were identified in WBP2NL and PAWP presented normal expression and localization. Overall we demonstrate in humans, the absence of PLCZ1 alone is sufficient to prevent oocyte activation irrespective of the presence of PAWP. Additionally, it is the first mutation located in the C2 domain of PLCZ1, a domain involved in targeting proteins to cell membranes. This opens the door to structure-function studies to identify the conserved amino acids of the C2 domain that regulate the targeting of PLCZ1 and its selectivity for its lipid substrate(s).


Asunto(s)
Proteínas Portadoras/genética , Infertilidad Masculina/genética , Mutación , Fosfoinositido Fosfolipasa C/genética , Proteínas de Plasma Seminal/genética , Interacciones Espermatozoide-Óvulo/genética , Espermatozoides/metabolismo , Adulto , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Señalización del Calcio , Proteínas Portadoras/metabolismo , Pérdida del Embrión , Femenino , Regulación de la Expresión Génica , Homocigoto , Humanos , Técnicas de Maduración In Vitro de los Oocitos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Oocitos/citología , Oocitos/metabolismo , Fosfoinositido Fosfolipasa C/deficiencia , Transporte de Proteínas , Proteínas de Plasma Seminal/metabolismo , Alineación de Secuencia , Hermanos , Motilidad Espermática , Espermatozoides/patología
8.
Biotechnol Bioeng ; 115(8): 2075-2086, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29704433

RESUMEN

Cancer survivorship rates have drastically increased due to improved efficacy of oncologic treatments. Consequently, clinical concerns have shifted from solely focusing on survival to quality of life, with fertility preservation as an important consideration. Among fertility preservation strategies for female patients, ovarian tissue cryopreservation and subsequent reimplantation has been the only clinical option available to cancer survivors with cryopreserved tissue. However, follicle atresia after transplantation and risk of reintroducing malignant cells have prevented this procedure from becoming widely adopted in clinics. Herein, we investigated the encapsulation of ovarian follicles in alginate hydrogels that isolate the graft from the host, yet allows for maturation after transplantation at a heterotopic (i.e., subcutaneous) site, a process we termed in vivo follicle maturation. Survival of multiple follicle populations was confirmed via histology, with the notable development of the antral follicles. Collected oocytes (63%) exhibited polar body extrusion and were fertilized by intracytoplasmic sperm injection and standard in vitro fertilization procedures. Successfully fertilized oocytes developed to the pronucleus (14%), two-cell (36%), and four-cell (7%) stages. Furthermore, ovarian follicles cotransplanted with metastatic breast cancer cells within the hydrogels allowed for retrieval of the follicles, and no mice developed tumors after removal of the implant, confirming that the hydrogel prevented seeding of disease within the host. Collectively, these findings demonstrate a viable option for safe use of potentially cancer-laden ovarian donor tissue for in vivo follicle maturation within a retrievable hydrogel and subsequent oocyte collection. Ultimately, this technology may provide novel options to preserve fertility for young female patients with cancer.


Asunto(s)
Fertilización In Vitro/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato , Recuperación del Oocito , Trasplante de Órganos/métodos , Folículo Ovárico/fisiología , Animales , Femenino , Ratones , Modelos Animales , Trasplante de Neoplasias
9.
Reproduction ; 154(3): 307-318, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28751536

RESUMEN

The efficiency of intracytoplasmic sperm injection (ICSI) in the bovine is low compared to other species. It is unknown whether defective oocyte activation and/or sperm head decondensation limit the success of this technique in this species. To elucidate where the main obstacle lies, we used homologous and heterologous ICSI and parthenogenetic activation procedures. We also evaluated whether in vitro maturation negatively impacted the early stages of activation after ICSI. Here we showed that injected bovine sperm are resistant to nuclear decondensation by bovine oocytes and this is only partly overcome by exogenous activation. Remarkably, when we used heterologous ICSI, in vivo-matured mouse eggs were capable of mounting calcium oscillations and displaying normal PN formation following injection of bovine sperm, although in vitro-matured mouse oocytes were unable to do so. Together, our data demonstrate that bovine sperm are especially resistant to nuclear decondensation by in vitro-matured oocytes and this deficiency cannot be simply overcome by exogenous activation protocols, even by inducing physiological calcium oscillations. Therefore, the inability of a suboptimal ooplasmic environment to induce sperm head decondensation limits the success of ICSI in the bovine. Studies aimed to improve the cytoplasmic milieu of in vitro-matured oocytes and to replicate the molecular changes associated with in vivo capacitation and acrosome reaction will deepen our understanding of the mechanism of fertilization and improve the success of ICSI in this species.


Asunto(s)
Enfermedades de los Bovinos/terapia , Núcleo Celular/patología , Ensamble y Desensamble de Cromatina , Infertilidad Masculina/veterinaria , Cabeza del Espermatozoide/patología , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Interacciones Espermatozoide-Óvulo , Animales , Señalización del Calcio , Bovinos , Enfermedades de los Bovinos/metabolismo , Enfermedades de los Bovinos/patología , Núcleo Celular/metabolismo , Células Cultivadas , Técnicas de Cultivo de Embriones/veterinaria , Femenino , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Infertilidad Masculina/terapia , Masculino , Ratones , Partenogénesis , Especificidad de la Especie , Capacitación Espermática , Cabeza del Espermatozoide/metabolismo
10.
Mol Hum Reprod ; 21(2): 169-85, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25354700

RESUMEN

We recently identified the DPY19L2 gene as the main genetic cause of human globozoospermia. Non-genetically characterized cases of globozoospermia were associated with DNA alterations, suggesting that DPY19L2-dependent globozoospermia may be associated with poor DNA quality. However the origins of such defects have not yet been characterized and the consequences on the quality of embryos generated with globozoospermic sperm remain to be determined. Using the mouse model lacking Dpy19l2, we compared several key steps of nuclear compaction. We show that the kinetics of appearance and disappearance of the histone H4 acetylation waves and of transition proteins are defective. More importantly, the nuclear invasion by protamines does not occur. As a consequence, we showed that globozoospermic sperm presented with poor sperm chromatin compaction and sperm DNA integrity breakdown. We next assessed the developmental consequences of using such faulty sperm by performing ICSI. We showed in the companion article that oocyte activation (OA) with globozoospermic sperm is very poor and due to the absence of phospholipase Cζ; therefore artificial OA (AOA) was used to bypass defective OA. Herein, we evaluated the developmental potential of embryos generated by ICSI + AOA in mice. We demonstrate that although OA was fully rescued, preimplantation development was impaired when using globozoospermic sperm. In human, a small number of embryos could be generated with sperm from DPY19L2-deleted patients in the absence of AOA and these embryos also showed a poor developmental potential. In conclusion, we show that chromatin compaction during spermiogenesis in Dpy19l2 KO mouse is defective and leads to sperm DNA damage. Most of the DNA breaks were already present when the sperm reached the epididymis, indicating that they occurred inside the testis. This result thus suggests that testicular sperm extraction in Dpy19l2-dependent globozoospermia is not recommended. These defects may largely explain the poor embryonic development of most mouse and human embryos obtained with globozoospermic sperm.


Asunto(s)
Proteínas de la Membrana/deficiencia , Espermatozoides/metabolismo , Animales , Daño del ADN/genética , Daño del ADN/fisiología , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Oocitos/metabolismo , Protaminas/metabolismo , Espermátides/metabolismo , Espermatogénesis/genética , Espermatogénesis/fisiología , Espermatozoides/fisiología
11.
Mol Hum Reprod ; 21(2): 157-68, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25354701

RESUMEN

We recently identified the DPY19L2 gene as the main genetic cause of human globozoospermia (70%) and described that Dpy19l2 knockout (KO) mice faithfully reproduce the human phenotype of globozoospermia making it an excellent model to characterize the molecular physiopathology of globozoospermia. Recent case studies on non-genetically characterized men with globozoospermia showed that phospholipase C, zeta (PLCζ), the sperm factor thought to induce the Ca(2+) oscillations at fertilization, was absent from their sperm, explaining the poor fertilization potential of these spermatozoa. Since 30% of globozoospermic men remain genetically uncharacterized, the absence of PLCζ in DPY19L2 globozoospermic men remains to be formally established. Moreover, the precise localization of PLCζ and the reasons underlying its loss during spermatogenesis in globozoospermic patients are still not understood. Herein, we show that PLCζ is absent, or its presence highly reduced, in human and mouse sperm with DPY19L2-associated globozoospermia. As a consequence, fertilization with sperm from Dpy19l2 KO mice failed to initiate Ca(2+) oscillations and injected oocytes remained arrested at the metaphase II stage, although a few human oocytes injected with DPY19L2-defective sperm showed formation of 2-pronuclei embryos. We report for the first time the subcellular localization of PLCζ in control human sperm, which is along the inner acrosomal membrane and in the perinuclear theca, in the area corresponding to the equatorial region. Because these cellular components are absent in globozoospermic sperm, the loss of PLCζ in globozoospermic sperm is thus consistent and reinforces the role of PLCζ as an oocyte activation factor necessary for oocyte activation. In our companion article, we showed that chromatin compaction during spermiogenesis in Dpy19l2 KO mouse is defective and leads to sperm DNA damage. Together, these defects explain the poor fertilization potential of DPY19L2-globozoospermic sperm and the compromised developmental potential of embryos obtained using sperm from patients with a deletion of the DPY19L2 gene.


Asunto(s)
Proteínas de la Membrana/deficiencia , Oocitos/metabolismo , Espermatozoides/enzimología , Espermatozoides/fisiología , Fosfolipasas de Tipo C/metabolismo , Acrosoma/metabolismo , Animales , Femenino , Humanos , Infertilidad Masculina/enzimología , Infertilidad Masculina/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados
12.
J Assist Reprod Genet ; 32(9): 1415-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26174123

RESUMEN

PURPOSE: The purpose of this study is to describe impaired oocyte fertilization from phospholipase C-zeta (PLC-ζ) deficiency in normal-appearing sperm that was successfully treated using calcium (Ca(2+)) ionophore with intracytoplasmic sperm injection (ICSI) of oocytes matured in vitro. METHODS: An infertile couple undergoing in vitro fertilization (IVF) experienced failed oocyte fertilization following ICSI with normal-appearing sperm. A semen sample collected from the patient was used to assess the expression of sperm PLC- ζ protein by Western blot analysis and immunofluorescence and PLC-ζ bioactivity by an in vitro model of Ca(2+) release. A second IVF cycle was performed using Ca(2+) ionophore with ICSI to enhance Ca(2+)-induced oocyte activation of oocytes matured in vitro. RESULTS: Sperm PLC-ζ protein deficiency was demonstrated by Western blot analysis and immunofluorescence and confirmed by reduced PLC-ζ bioactivity using an in vitro model of Ca(2+) release. Nevertheless, with this sperm and supplementation of Ca(2+) ionophore following ICSI, fertilization of four of six oocytes matured in vitro was obtained. In addition, four embryos underwent cleavage and two of them reached the blastocyst stage. Transfer of these blastocysts into the uterus led to a single pregnancy and live birth. CONCLUSIONS: Deficiency of PLC-ζ in normal-appearing human sperm is associated with impaired Ca(2+)-dependent oocyte activation during ICSI. Under this condition, use of Ca(2+) ionophore following ICSI of oocytes matured in vitro improves embryo developmental competence, possibly through the activation of Ca(2+)-dependent mechanisms governing fertilization and preimplantation embryogenesis.


Asunto(s)
Fertilización/fisiología , Infertilidad/etiología , Oocitos/citología , Inducción de la Ovulación , Fosfoinositido Fosfolipasa C/deficiencia , Inyecciones de Esperma Intracitoplasmáticas/métodos , Espermatozoides/fisiología , Adulto , Western Blotting , Transferencia de Embrión , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Recién Nacido , Infertilidad/enzimología , Masculino , Oocitos/fisiología , Embarazo , Insuficiencia del Tratamiento
13.
J Assist Reprod Genet ; 31(6): 749-56, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24756570

RESUMEN

PURPOSE: This study was conducted to determine if expression of the testis-specific phospholipase C Zeta1 (PLCZ1) correlated with low success or fertilization failure after ICSI in patients with normal parameters after standard semen analysis (SA). METHODS: Couples <43 years with one or two failed or low fertilization ICSI cycles. Standard Semen Analysis (SA) was performed to determine sperm parameters in male partners, whereas females were evaluated for antral follicle counts (AFC), day 3 FSH levels and peak Estradiol (E2) levels. The presence of PLCZ1 in sperm was ascertained using Western blotting and Immunofluorescence (IF) analysis. The ability of sperm to initiate changes in the intracellular concentrations of free calcium ([Ca(2+)]i), which is characteristic of mammalian sperm, was performed after injection of human sperm into mouse eggs loaded with the Ca(2+) sensitive dye fura-2 AM. RESULTS: Male partners of couples with failed or low success ICSI fertilization but with normal SA parameters showed low expression levels of PLCZ1 as determined by western blotting and reduced fluorescent signal during IF studies. In addition, fewer of these males' sperm showed PLCZ1 expression and were able to initiate robust [Ca(2+)]i oscillations upon injection into eggs. CONCLUSION: Our data suggest that in patients with normal SA parameters but with repeated low fertilization or outright failed fertilization results after ICSI, abnormal PLCZ1 function should be considered as the underlying mechanism responsible for the failure of fertilization.


Asunto(s)
Fertilización In Vitro/métodos , Fosfoinositido Fosfolipasa C/biosíntesis , Análisis de Semen , Espermatozoides/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones , Oocitos/metabolismo , Fosfoinositido Fosfolipasa C/genética , Inyecciones de Esperma Intracitoplasmáticas/métodos
14.
Hum Reprod Open ; 2024(2): hoae023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38764910

RESUMEN

STUDY QUESTION: Is there an association between morphokinetic variables of meiotic maturation and the severity of aneuploidy following in vitro maturation (IVM) in the mouse? SUMMARY ANSWER: The severity of meiotic aneuploidy correlates with an extended time to first polar body extrusion (tPB1) and duration of meiosis I (dMI). WHAT IS KNOWN ALREADY: Morphokinetic variables measured using time-lapse technology allow for the non-invasive evaluation of preimplantation embryo development within clinical assisted reproductive technology (ART). We recently applied this technology to monitor meiotic progression during IVM of mouse gametes. Whether there is a relationship between morphokinetic variables of meiotic progression and aneuploidy in the resulting egg has not been systematically examined at the resolution of specific chromosomes. Next-generation sequencing (NGS) is a robust clinical tool for determining aneuploidy status and has been reverse-translated in mouse blastocysts and oocytes. Therefore, we harnessed the technologies of time-lapse imaging and NGS to determine the relationship between the morphokinetics of meiotic progression and egg aneuploidy. STUDY DESIGN SIZE DURATION: Cumulus-oocyte complexes were collected from large antral follicles from hyperstimulated CD-1 mice. Cumulus cells were removed, and spontaneous IVM was performed in the absence or presence of two doses of Nocodazole (25 or 50 nM) to induce a spectrum of spindle abnormalities and chromosome segregation errors during oocyte meiosis. Comprehensive chromosome screening was then performed in the resulting eggs, and morphokinetic variables and ploidy status were compared across experimental groups (control, n = 11; 25 nM Nocodazole, n = 13; 50 nM Nocodazole, n = 23). PARTICIPANTS/MATERIALS SETTING METHODS: We monitored IVM in mouse oocytes using time-lapse microscopy for 16 h, and time to germinal vesicle breakdown (tGVBD), tPB1, and dMI were analyzed. Following IVM, comprehensive chromosome screening was performed on the eggs and their matched first polar bodies via adaptation of an NGS-based preimplantation genetic testing for aneuploidy (PGT-A) assay. Bioinformatics analysis was performed to align reads to the mouse genome and determine copy number-based predictions of aneuploidy. The concordance of each polar body-egg pair (reciprocal errors) was used to validate the results. Ploidy status was categorized as euploid, 1-3 chromosomal segregation errors, or ≥4 chromosomal segregation errors. Additionally, aneuploidy due to premature separation of sister chromatids (PSSC) versus non-disjunction (NDJ) was distinguished. MAIN RESULTS AND THE ROLE OF CHANCE: We applied and validated state-of-the-art NGS technology to screen aneuploidy in individual mouse eggs and matched polar bodies at the chromosome-specific level. By performing IVM in the presence of different doses of Nocodazole, we induced a range of aneuploidy. No aneuploidy was observed in the absence of Nocodazole (0/11), whereas IVM in the presence of 25 and 50 nM Nocodazole resulted in an aneuploidy incidence of 7.69% (1/13) and 82.61% (19/23), respectively. Of the aneuploid eggs, 5% (1/20) was due to PSSC, 65% (13/20) to NDJ, and the remainder to a combination of both. There was no relationship between ploidy status and tGVBD, but tPB1 and the dMI were both significantly prolonged in eggs with reciprocal aneuploidy events compared to the euploid eggs, and this scaled with the severity of aneuploidy. Eggs with ≥4 aneuploid chromosomes had the longest tPB1 and dMI (P < 0.0001), whereas eggs with one to three aneuploid chromosomes exhibited intermediate lengths of time (P < 0.0001). LARGE SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: We used Nocodazole in this study to disrupt the meiotic spindle and induce aneuploidy in mouse oocytes. Whether the association between morphokinetic variables of meiotic progression and the severity of aneuploidy occurs with other compounds that induce chromosome segregation errors remain to be investigated. In addition, unlike mouse oocytes, human IVM requires the presence of cumulus cells, which precludes visualization of morphokinetic variables of meiotic progression. Thus, our study may have limited direct clinical translatability. WIDER IMPLICATIONS OF THE FINDINGS: We validated NGS in mouse eggs to detect aneuploidy at a chromosome-specific resolution which greatly improves the utility of the mouse model. With a tractable and validated model system for characterizing meiotic aneuploidy, investigations into the molecular mechanisms and factors which may influence aneuploidy can be further elaborated. Time-lapse analyses of morphokinetic variables of meiotic progression may be a useful non-invasive predictor of aneuploidy severity. STUDY FUNDING/COMPETING INTERESTS: This work was supported by the Bill & Melinda Gates Foundation (INV-003385). Under the grant conditions of the Foundation, a Creative Commons Attribution 4.0 Generic License has already been assigned to the Author Accepted Manuscript version that might arise from this submission. The authors have no conflict of interest to disclose.

15.
Lab Chip ; 23(22): 4821-4833, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37846545

RESUMEN

To accurately phenocopy human biology in vitro, researchers have been reducing their dependence on standard, static two-dimensional (2D) cultures and instead are moving towards three-dimensional (3D) and/or multicellular culture techniques. While these culture innovations are becoming more commonplace, there is a growing body of research that illustrates the benefits and even necessity of recapitulating the dynamic flow of nutrients, gas, waste exchange and tissue interactions that occur in vivo. However, cost and engineering complexity are two main factors that hinder the adoption of these technologies and incorporation into standard laboratory workflows. We developed LATTICE, a plug-and-play microfluidic platform able to house up to eight large tissue or organ models that can be cultured individually or in an interconnected fashion. The functionality of the platform to model both healthy and diseased tissue states was demonstrated using 3D cultures of reproductive tissues including murine ovarian tissues and human fallopian tube explants (hFTE). When exogenously exposed to pathological doses of gonadotropins and androgens to mimic the endocrinology of polycystic ovarian syndrome (PCOS), subsequent ovarian follicle development, hormone production and ovulation copied key features of this endocrinopathy. Further, hFTE cilia beating decreased significantly only when experiencing continuous media exchanges. We were then able to endogenously recreate this phenotype on the platform by dynamically co-culturing the PCOS ovary and hFTE. LATTICE was designed to be customizable with flexibility in 3D culture formats and can serve as a powerful automated tool to enable the study of tissue and cellular dynamics in health and disease in all fields of research.


Asunto(s)
Síndrome del Ovario Poliquístico , Femenino , Animales , Humanos , Ratones , Síndrome del Ovario Poliquístico/metabolismo , Microfluídica , Técnicas de Cocultivo
16.
Hum Reprod ; 27(1): 222-31, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22095789

RESUMEN

BACKGROUND: Male factor and idiopathic infertility contribute significantly to global infertility, with abnormal testicular gene expression considered to be a major cause. Certain types of male infertility are caused by failure of the sperm to activate the oocyte, a process normally regulated by calcium oscillations, thought to be induced by a sperm-specific phospholipase C, PLCzeta (PLCζ). Previously, we identified a point mutation in an infertile male resulting in the substitution of histidine for proline at position 398 of the protein sequence (PLCζ(H398P)), leading to abnormal PLCζ function and infertility. METHODS AND RESULTS: Here, using a combination of direct-sequencing and mini-sequencing of the PLCζ gene from the patient and his family, we report the identification of a second PLCζ mutation in the same patient resulting in a histidine to leucine substitution at position 233 (PLCζ(H233L)), which is predicted to disrupt local protein interactions in a manner similar to PLCζ(H398P) and was shown to exhibit abnormal calcium oscillatory ability following predictive 3D modelling and cRNA injection in mouse oocytes respectively. We show that PLCζ(H233L) and PLCζ(H398P) exist on distinct parental chromosomes, the former inherited from the patient's mother and the latter from his father. Neither mutation was detected utilizing custom-made single-nucleotide polymorphism assays in 100 fertile males and females, or 8 infertile males with characterized oocyte activation deficiency. CONCLUSIONS: Collectively, our findings provide further evidence regarding the importance of PLCζ at oocyte activation and forms of male infertility where this is deficient. Additionally, we show that the inheritance patterns underlying male infertility are more complex than previously thought and may involve maternal mechanisms.


Asunto(s)
Infertilidad Masculina/genética , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Mutación Puntual , Animales , Calcio/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Madres , Oocitos/citología , Polimorfismo de Nucleótido Simple , ARN Complementario/metabolismo , Análisis de Secuencia de ADN
17.
Hum Reprod ; 27(6): 1768-80, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22456923

RESUMEN

BACKGROUND: Oocyte activation is a crucial step that comprises the release of the oocyte from meiotic arrest, pronuclear formation and subsequent embryo development. Oocytes are activated by repetitive increases in the intracellular concentration of free Ca(2+), [Ca(2+)](i) oscillations, which are triggered during fertilization by the introduction of the sperm-specific phospholipase C zeta 1 (PLCZ1). Recent studies have shown that sperm from patients lacking expression of PLCZ1 or expressing mutant forms of PLCZ1 fail to induce [Ca(2+)](i) oscillations or oocyte activation. We first purified recombinant human PLCZ1 (hPLCZ1) protein and evaluated its [Ca(2+)](i) oscillation activity in mouse and human oocytes with the view to investigate its application in the clinic for assisted oocytes activation in lieu of chemical agents. METHODS: Recombinant hPLCZ1 was synthesized using the Escherichia coli system, and subjected to immunoblot analysis with anti-PLCZ1 and anti-His tag antibodies. [Ca(2+)](i) oscillations by microinjection of recombinant hPLCZ1 into mouse or human oocytes were examined by [Ca(2+)](i) monitoring with Fluo 4. Ploidy of the oocytes with recombinant hPLCZ1 injection was confirmed with fluorescence in situ hybridization. RESULTS: A band of 68 kDa on recombinant protein was detected with both antibodies. Injection of recombinant hPLCZ1 induced [Ca(2+)](i) oscillations in a dose-dependent manner in both mouse and human oocytes. These oscillations, which closely resembled those initiated by the sperm upon fertilization, triggered activation and cleavage in oocytes of both species, although further development of the mice embryos was low. U73122, a PLC inhibitor, blocked the ability of hPLCZ1 to initiate oscillations. Microinjection of recombinant hPLCZ1 into ICSI-failed human oocytes rescued fertilization failure in five of eight attempts. CONCLUSIONS: Repeated [Ca(2+)](i) oscillations and oocyte activation were induced in mouse and human oocytes by microinjection of recombinant hPLCZ1 synthesized in E. Coli. Injection of recombinant protein could thus provide a biological solution for inducing artificial activation of oocytes.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Oocitos/efectos de los fármacos , Oocitos/fisiología , Fosfoinositido Fosfolipasa C/farmacología , Proteínas Recombinantes/farmacología , Adulto , Animales , Calcio/metabolismo , Femenino , Fertilización In Vitro , Humanos , Masculino , Ratones
18.
J Clin Invest ; 118(11): 3671-81, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18924610

RESUMEN

Egg activation, which is the first step in the initiation of embryo development, involves both completion of meiosis and progression into mitotic cycles. In mammals, the fertilizing sperm delivers the activating signal, which consists of oscillations in free cytosolic Ca(2+) concentration ([Ca(2+)](i)). Intracytoplasmic sperm injection (ICSI) is a technique that in vitro fertilization clinics use to treat a myriad of male factor infertility cases. Importantly, some patients who repeatedly fail ICSI also fail to induce egg activation and are, therefore, sterile. Here, we have found that sperm from patients who repeatedly failed ICSI were unable to induce [Ca(2+)](i) oscillations in mouse eggs. We have also shown that PLC, zeta 1 (PLCZ1), the sperm protein thought to induce [Ca(2+)](i) oscillations, was localized to the equatorial region of wild-type sperm heads but was undetectable in sperm from patients who had failed ICSI. The absence of PLCZ1 in these patients was further confirmed by Western blot, although genomic sequencing failed to reveal conclusive PLCZ1 mutations. Using mouse eggs, we reproduced the failure of sperm from these patients to induce egg activation and rescued it by injection of mouse Plcz1 mRNA. Together, our results indicate that the inability of human sperm to initiate [Ca(2+)](i) oscillations leads to failure of egg activation and sterility and that abnormal PLCZ1 expression underlies this functional defect.


Asunto(s)
Calcio/metabolismo , Desarrollo Embrionario/genética , Fosfoinositido Fosfolipasa C/genética , Espermatozoides/fisiología , Humanos , Masculino , Fosfoinositido Fosfolipasa C/metabolismo , Espermatozoides/metabolismo
19.
Hum Reprod ; 26(12): 3372-87, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22010140

RESUMEN

BACKGROUND: Mammalian oocyte activation occurs via a series of intracellular calcium (Ca(2+)) oscillations thought to be induced by a sperm-specific phospholipase C zeta (PLCζ). There is now strong evidence to indicate that certain types of human male infertility are caused by failure of the sperm to activate the oocyte in an appropriate manner. Molecular analysis of the PLCζ gene of a male patient with oocyte activation deficiency has previously identified a point mutation causing a histidine to proline substitution at PLCζ residue 398 (PLCζ(H398P)), leading to abnormal Ca(2+) release profiles and reduced oocyte activation efficiency. METHODS AND RESULTS: In the present study, we used HEK293T cells to produce recombinant human wild-type PLCζ (PLCζ(WT)) protein which, upon microinjection into mouse oocytes, induced Ca(2+) oscillations characteristic of oocyte activation. Injection of recombinant PLCζ(H398P) was unable to elicit Ca(2+) oscillations in mouse oocytes. Loss of activity mutations, such as PLCζ(H398P) and an artificially induced frameshift mutation (PLCζ(ΔYC2)) did not affect Ca(2+) release when over-expressed in HEK293T cells, whereas PLCζ(WT) inhibited adenosine triphosphate-activated Ca(2+) release. Confocal imaging of fluorescently tagged PLCζ isoforms in HEK293T cells suggested a cytoplasmic pattern of localization, while quantitative analysis of fluorescence levels showed that PLCζ(WT) > PLCζ(H398P) > PLCζ(ΔYC2), indicating that loss of activity mutations may lead to protein instability. This was further indicated by the low proportion of sperm and the lower levels of total PLCζ immunofluorescence from the patient exhibiting PLCζ(H398P) compared with fertile controls. CONCLUSIONS: We demonstrate, for the first time, the production of active recombinant human PLCζ protein which retained the ability to elicit characteristic Ca(2+) oscillations in mouse oocytes, an ability which was eliminated by an infertility-linked mutation. These findings advance our understanding of PLCζ, and provide a critical step forward in obtaining purified PLCζ protein as a potential therapeutic agent for oocyte activation deficiency.


Asunto(s)
Calcio/metabolismo , Mutación , Oocitos/metabolismo , Fosfoinositido Fosfolipasa C/genética , Adenosina Trifosfato/farmacología , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Masculino , Ratones , Proteínas Recombinantes/metabolismo , Interacciones Espermatozoide-Óvulo , Espermatozoides/metabolismo
20.
Andrology ; 9(3): 922-932, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33565255

RESUMEN

BACKGROUND: Although only one spermatozoon is needed to create a zygote, a significant challenge is the storage and recovery of germ cells when sperm counts are extremely low. OBJECTIVES: We engineered an oocyte-derived biomaterial-the zona pellucida (ZP)-as a "sperm safe" for storing spermatozoon. The ZP is a glycoprotein matrix that surrounds the mammalian oocyte. MATERIALS AND METHODS: We made a hole in the ZPs using a Piezo drill and mechanically separated them from the oocyte cytoplasm. A subset of ZPs were further purified through decellularization. Using a modified ICSI approach, we injected sperm heads into purified ZPs and tested the efficacy of cryopreservation and recovery of spermatozoon as well as function. RESULTS: Between 1-6 sperm heads were injected into purified ZPs (average 2.7 ± 1.7 sperm heads/ZP), which were then cryopreserved. Upon thawing, an average of 2.5 ± 1.4 sperm heads/ZP were observed, and in 11 of 12 thawed "sperm safes," we recovered all spermatozoa. Decellularized "sperm safes" maintained their three-dimensional structure and had a denser matrix relative to untreated controls as assessed by scanning and transmitted electron microscopy. The efficacy of "sperm safe" derived spermatozoon was evaluated by ICSI. Spermatozoon stored in either untreated or decellularized "sperm safes" elicited egg activation-associated calcium transients and zinc sparks when injected into eggs. Of the resulting zygotes, >80% of them formed pronuclei irrespective of the sperm source. 26.8 ± 4.6% and 18.1 ± 7.0% of the pre-implantation embryos generated from spermatozoon recovered from untreated or decellularized "sperm safes" developed to the blastocyst stage, respectively. Although this development was lower than that using fresh spermatozoon (59.3 ± 19.3%) or conventionally frozen-thawed spermatozoon (28.4 ± 1.7%), these differences were not significant. DISCUSSION AND CONCLUSION: Purified ZPs represent a natural biomaterial for the efficient preservation and recovery of small sperm numbers.


Asunto(s)
Criopreservación , Espermatozoides , Ingeniería de Tejidos , Zona Pelúcida , Animales , Femenino , Preservación de la Fertilidad , Masculino , Ratones , Inyecciones de Esperma Intracitoplasmáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA