Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(43): 8617-8624, 2024 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-39360784

RESUMEN

In this study, N-heterocyclic compounds were synthesized using nitrogen-containing nucleophilic substrates and electrophilic carbon sources derived from N,N-dimethylacetamide (DMAc). Depending on the nucleophilic groups, N-heterocyclic compounds such as 4-quinazolinones, pyrrole-quinoxalines, and dihydro-benzothiadiazine dioxides were produced. Carbon, adjacent to the nitrogen in DMAc, was activated in the presence of FeCl3·6H2O and di-t-butyl peroxide (DTBP). This procedure was considered an economical synthetic method because it utilized iron catalysts and DMAc as an electrophilic carbon source and a solvent.

2.
J Am Chem Soc ; 145(36): 19676-19690, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37642383

RESUMEN

A targeted and logical discovery method was devised for natural products containing piperazic acid (Piz), which is biosynthesized from ornithine by l-ornithine N-hydroxylase (KtzI) and N-N bond formation enzyme (KtzT). Genomic signature-based screening of a bacterial DNA library (2020 strains) using polymerase chain reaction (PCR) primers targeting ktzT identified 62 strains (3.1%). The PCR amplicons of KtzT-encoding genes were phylogenetically analyzed to classify the 23 clades into two monophyletic groups, I and II. Cultivating hit strains in media supplemented with 15NH4Cl and applying 1H-15N heteronuclear multiple bond correlation (HMBC) along with 1H-15N heteronuclear single quantum coherence (HSQC) and 1H-15N HSQC-total correlation spectroscopy (HSQC-TOCSY) NMR experiments detected the spectroscopic signatures of Piz and modified Piz. Chemical investigation of the hit strains prioritized by genomic and spectroscopic signatures led to the identification of a new azinothricin congener, polyoxyperuin B seco acid (1), previously reported chloptosin (2) in group I, depsidomycin D (3) incorporating two dehydropiperazic acids (Dpz), and lenziamides A and B (4 and 5), structurally novel 31-membered cyclic decapeptides in group II. By consolidating the phylogenetic and chemical analyses, clade-structure relationships were elucidated for 19 of the 23 clades. Lenziamide A (4) inhibited STAT3 activation and induced G2/M cell cycle arrest, apoptotic cell death, and tumor growth suppression in human colorectal cancer cells. Moreover, lenziamide A (4) resensitized 5-fluorouracil (5-FU) activity in both in vitro cell cultures and the in vivo 5-FU-resistant tumor xenograft mouse model. This work demonstrates that the genomic and spectroscopic signature-based searches provide an efficient and general strategy for new bioactive natural products containing specific structural motifs.


Asunto(s)
Productos Biológicos , Genómica , Humanos , Animales , Ratones , Filogenia , Análisis Espectral , Productos Biológicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA