Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nano Lett ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607382

RESUMEN

We propose a band engineering scheme on the biphenylene network, a newly synthesized carbon allotrope. We illustrate that the electronic structure of the biphenylene network can be significantly altered by controlling conditions affecting the symmetry and destructive interference of wave functions through periodic fluorination. First, we investigate the mechanism for the appearance of a type-II Dirac fermion in a pristine biphenylene network. We show that the essential ingredients are mirror symmetries and stabilization of the compact localized eigenstates via destructive interference. While the former is used for the band-crossing point along high symmetry lines, the latter induces highly inclined Dirac dispersions. Subsequently, we demonstrate the transformation of the biphenylene network's type-II Dirac semimetal phase into various Dirac phases such as type-I Dirac, gapped type-II Dirac, and nodal line semimetals through the deliberate disruption of mirror symmetry or modulation of destructive interference by varying the concentration of fluorine atoms.

2.
Nano Lett ; 21(21): 9153-9163, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34677071

RESUMEN

Two-dimensional (2D) transition metal dichalcogenide (TMD) layers are unit-cell thick materials with tunable physical properties according to their size, morphology, and chemical composition. Their transition of lab-scale research to industrial-scale applications requires process development for the wafer-scale growth and scalable device fabrication. Herein, we report on a new type of atmospheric pressure chemical vapor deposition (APCVD) process that utilizes colloidal nanoparticles as process-scalable precursors for the wafer-scale production of TMD monolayers. Facile uniform distribution of nanoparticle precursors on the entire substrate leads to the wafer-scale uniform synthesis of TMD monolayers with the controlled size and morphology. Composition-controlled TMD alloy monolayers with tunable bandgaps can be produced by simply mixing dual nanoparticle precursor solutions in the desired ratio. We also demonstrate the fabrication of ultrathin field-effect transistors and flexible electronics with uniformly controlled performance by using TMD monolayers.

3.
Phys Chem Chem Phys ; 22(27): 15675-15682, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32618312

RESUMEN

By using first principles density functional theory simulations, we report detailed geometries, electronic structures and hydrogen (H2) storage properties of boron nitride nanotubes (BNNTs) doped with selective polylithiated molecules (CLi2). We find that unsaturated bonding of Li-1s states with BNNT significantly enhances the system stability and hinders the Li-Li clustering effect, which can be detrimental for reversible H2 storage. The H2 adsorption mechanism is explained on the basis of polarization caused by the cationic Li+ of CLi2 molecules bonded with BNNT. The incident H2 molecules are adsorbed with BNNT-nCLi2 through electrostatic and van der Waals interactions. We find that with a maximum of 5.0% of CLi2 coverage on BNNT, an H2 gravimetric density of up to 4.41 wt% can be achieved with adsorption energies in the range of -0.33 eV per H2, which is suitable for ambient condition H2 storage applications.

4.
J Phys Chem A ; 124(18): 3636-3640, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32298116

RESUMEN

Structural properties and energetics of carbon rings are studied with the diffusion Monte Carlo (DMC) method. Our DMC-based geometry optimization reveals that both polyynic C4n and cumulenic C4n + 2 rings exhibit bond length alternations for n ≥ 3, which is understood to be due to Jahn-Teller distortions. The bond length alternation even in a cumulenic (4n + 2) carbon ring was experimentally observed in a recently synthesized C18 molecule. From a comparison of the DMC cohesive energies of C4n with those of C4n + 2, we present a comprehensive picture of the competition between Hückel's rule and Jahn-Teller distortion in small carbon rings; the former is more dominant than the latter for n < 5 where C4n + 2 rings are more stable than C4n, while C4n rings are as stable as C4n + 2 for n < 5 where dimerization effects due to Jahn-Teller distortion are more important.

5.
J Am Chem Soc ; 141(2): 763-768, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30608684

RESUMEN

Nonclassical features of crystallization in solution have been recently identified both experimentally and theoretically. In particular, an amorphous-phase-mediated pathway is found in various crystallization systems as an important route, different from the classical nucleation and growth model. Here, we utilize high-resolution in situ transmission electron microscopy with graphene liquid cells to study amorphous-phase-mediated formation of Ni nanocrystals. An amorphous phase is precipitated in the initial stage of the reaction. Within the amorphous particles, crystalline domains nucleate and eventually form nanocrystals. In addition, unique crystallization behaviors, such as formation of multiple domains and dislocation relaxation, are observed in amorphous-phase-mediated crystallization. Theoretical calculations confirm that surface interactions can induce amorphous precipitation of metal precursors, which is analogous to the surface-induced amorphous-to-crystalline transformation occurring in biomineralization. Our results imply that an unexplored nonclassical growth mechanism is important for the formation of nanocrystals.

6.
J Am Chem Soc ; 141(17): 7037-7045, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30964997

RESUMEN

The formation of inorganic nanoparticles has been understood based on the classical crystallization theory described by a burst of nucleation, where surface energy is known to play a critical role, and a diffusion-controlled growth process. However, this nucleation and growth model may not be universally applicable to the entire nanoparticle systems because different precursors and surface ligands are used during their synthesis. Their intrinsic chemical reactivity can lead to a formation pathway that deviates from a classical nucleation and growth model. The formation of metal oxide nanoparticles is one such case because of several distinct chemical aspects during their synthesis. Typical carboxylate surface ligands, which are often employed in the synthesis of oxide nanoparticles, tend to continuously remain on the surface of the nanoparticles throughout the growth process. They can also act as an oxygen source during the growth of metal oxide nanoparticles. Carboxylates are prone to chemical reactions with different chemical species in the synthesis such as alcohol or amine. Such reactions can frequently leave reactive hydroxyl groups on the surface. Herein, we track the entire growth process of iron oxide nanoparticles synthesized from conventional iron precursors, iron-oleate complexes, with strongly chelating carboxylate moieties. Mass spectrometry studies reveal that the iron-oleate precursor is a cluster comprising a tri-iron-oxo core and carboxylate ligands rather than a mononuclear complex. A combinatorial analysis shows that the entire growth, regulated by organic reactions of chelating ligands, is continuous without a discrete nucleation step.

7.
Nano Lett ; 18(10): 6214-6221, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30247914

RESUMEN

The van der Waals epitaxy of functional materials provides an interesting and efficient way to manipulate the electrical properties of various hybrid two-dimensional (2D) systems. Here we show the controlled epitaxial assembly of semiconducting one-dimensional (1D) atomic chains, AuCN, on graphene and investigate the electrical properties of 1D/2D van der Waals heterostructures. AuCN nanowire assembly is tuned by different growth conditions, although the epitaxial alignment between AuCN chains and graphene remains unchanged. The switching of the preferred nanowire growth axis indicates that diffusion kinetics affects the nanowire formation process. Semiconducting AuCN chains endow the 1D/2D hybrid system with a strong responsivity to photons with an energy above 2.7 eV, which is consistent with the bandgap of AuCN. A large UV response (responsivity ∼104 A/W) was observed under illumination using 3.1 eV (400 nm) photons. Our study clearly demonstrates that 1D chain-structured semiconductors can play a crucial role as a component in multifunctional van der Waals heterostructures.

8.
Phys Chem Chem Phys ; 21(1): 329-335, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30520905

RESUMEN

Heterostructures constructed of graphene and colloidal nanocrystals provide a unique way to exploit the coupled physical properties of the two functional building blocks. Studying the interface structure between the two constituent materials is important to understand the formation mechanism and the resulting physical and chemical properties. Along with ab initio calculations, we elucidate that the bending rigidity and the strong van der Waals interaction of graphene to the metal surface guide the formation of a tight and conformal interface. Using theoretical foundations, we construct colloidal nanocrystal-graphene heterostructures with controlled interfacial structures and directly investigate the cross-sectional structures of them at high resolution by using aberration-corrected transmission electron microscopy. The experimental method and observations we present here will link the empirical methods for the formation of nanocrystal-graphene heterostructures to the mechanistic understanding of their properties.

10.
Phys Chem Chem Phys ; 18(42): 29086-29091, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27711490

RESUMEN

The development of advanced materials for CO2 capture is of great importance for mitigating climate change. In this paper, we outline our discovery that calcium-decorated carbon nanostructures, i.e., zigzag graphene nanoribbons (ZGNRs), carbyne, and graphyne, have great potential for selective CO2 capture, as demonstrated via first-principles calculations. Our findings show that Ca-decorated ZGNRs can bind up to three CO2 molecules at each Ca atom site with an adsorption energy of ∼-0.8 eV per CO2, making them suitable for reversible CO2 capture. They adsorb CO2 molecules preferentially, compared with other gas molecules such as H2, N2, and CH4. Moreover, based on equilibrium thermodynamical simulations, we confirm that Ca-decorated ZGNRs can capture CO2 selectively from a gas mixture with a capacity of ∼4.5 mmol g-1 under ambient conditions. Similar results have been found in other carbon nanomaterials, indicating the generality of carbon based nanostructures for selective CO2 capture under ambient conditions.

11.
Nanotechnology ; 26(11): 115601, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25706065

RESUMEN

New halogen/nitrogen dual-doped graphenes (X/N-G) with thermally tunable doping levels are synthesized via the thermal reduction of graphite oxide (GO) with stepwise-pyrolyzed ionic liquids. The doping process of halogen and nitrogen into the graphene lattice proceeds via substitutional or covalent bonding through the physisorption or chemisorption of in situ pyrolyzed dopant precursors. The doping process is performed by heating to 300-400 °C of ionic liquid, and the chemically assisted reduction of GO is facilitated by ionic iodine, resulting in I/N-G materials possessing about three and two orders of magnitude higher conductivity (∼22,200 S m(-1)) and charge carrier density (∼10(21) cm(-3)), compared to those of thermally reduced GO. The thermally tunable doping levels of halogen in X/N-G significantly increase the conductivity of doped graphene to ∼27,800 S m(-1).

12.
Phys Chem Chem Phys ; 16(19): 8935-9, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24691588

RESUMEN

Functionalization of graphdiyne, a two-dimensional atomic layer of sp-sp(2) hybrid carbon networks, was investigated through first-principles calculations. Hydrogen or halogen atoms preferentially adsorb on sp-bonded carbon atoms rather than on sp(2)-bonded carbon atoms, forming sp(2)- or sp(3)-hybridization. The energy band gap of graphdiyne is increased from ~0.5 eV to ~5.2 eV through the hydrogenation or halogenation. Unlike graphene, segregation of adsorbing atoms is energetically unfavourable. Our results show that hydrogenation or halogenation can be utilized for modifying the electronic properties of graphdiyne for applications to nano-electronics and -photonics.

13.
J Chem Phys ; 140(11): 114702, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24655193

RESUMEN

We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp(3)-bonded diamond, sp(2)-bonded graphene, sp-sp(2) hybridized graphynes, and sp-bonded carbyne. The computed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values determined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases systematically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of γ-graphyne, the most energetically stable graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experimental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally, we conclude that the cohesive energy of a newly proposed graphyne can be accurately estimated with the carbon-carbon bond energies determined from the cohesive energies of graphene and three different graphynes considered here.

14.
Nanoscale ; 15(2): 532-539, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36515137

RESUMEN

Nanoparticle surfaces are passivated by surface-bound ligands, and their adsorption on synthesized nanoparticles is complicated because of the intricate and low-symmetry surface structures. Thus, it is challenging to precisely investigate ligand adsorption on synthesized nanoparticles. Here, we applied machine-learning-accelerated ab initio calculation to experimentally resolved 3D atomic structures of Pt nanoparticles to analyze the complex adsorption behavior of polyvinylpyrrolidone (PVP) ligands on synthesized nanoparticles. Different angular configurations of large-sized ligands are thoroughly investigated to understand the adsorption behavior on various surface-exposed atoms with intrinsic low-symmetry. It is revealed that the ligand binding energy (Eads) of the large-sized ligand shows a weak positive relationship with the generalized coordination number . This is because the strong positive relationship of short-range direct bonding (Ebind) is attenuated by the negative relationship of long-range van der Waals interaction (EvdW). In addition, it is demonstrated that the PVP ligands prefer to adsorb where the long-range vdW interaction with the surrounding surface structure is maximized. Our results highlight the significant contribution of vdW interactions and the importance of the local geometry of surface atoms to the adsorption behavior of large-sized ligands on synthesized nanoparticle surfaces.

15.
ACS Nano ; 17(14): 13734-13745, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37399231

RESUMEN

Elucidating the water-induced degradation mechanism of quantum-sized semiconductor nanocrystals is an important prerequisite for their practical application because they are vulnerable to moisture compared to their bulk counterparts. In-situ liquid-phase transmission electron microscopy is a desired method for studying nanocrystal degradation, and it has recently gained technical advancement. Herein, the moisture-induced degradation of semiconductor nanocrystals is investigated using graphene double-liquid-layer cells that can control the initiation of reactions. Crystalline and noncrystalline domains of quantum-sized CdS nanorods are clearly distinguished during their decomposition with atomic-scale imaging capability of the developed liquid cells. The results reveal that the decomposition process is mediated by the involvement of the amorphous-phase formation, which is different from conventional nanocrystal etching. The reaction can proceed without the electron beam, suggesting that the amorphous-phase-mediated decomposition is induced by water. Our study discloses unexplored aspects of moisture-induced deformation pathways of semiconductor nanocrystals, involving amorphous intermediates.

16.
Nano Lett ; 11(7): 2660-5, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21648444

RESUMEN

Among the carbon allotropes, carbyne chains appear outstandingly accessible for sorption and very light. Hydrogen adsorption on calcium-decorated carbyne chain was studied using ab initio density functional calculations. The estimation of surface area of carbyne gives the value four times larger than that of graphene, which makes carbyne attractive as a storage scaffold medium. Furthermore, calculations show that a Ca-decorated carbyne can adsorb up to 6 H(2) molecules per Ca atom with a binding energy of ∼0.2 eV, desirable for reversible storage, and the hydrogen storage capacity can exceed ∼8 wt %. Unlike recently reported transition metal-decorated carbon nanostructures, which suffer from the metal clustering diminishing the storage capacity, the clustering of Ca atoms on carbyne is energetically unfavorable. Thermodynamics of adsorption of H(2) molecules on the Ca atom was also investigated using equilibrium grand partition function.


Asunto(s)
Calcio/química , Carbamatos/química , Suministros de Energía Eléctrica , Hidrógeno/química , Adsorción , Modelos Moleculares , Nanotecnología , Teoría Cuántica , Propiedades de Superficie
17.
ACS Nano ; 16(2): 2176-2187, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35112565

RESUMEN

Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines. Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10-15), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular n-doping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases.

18.
Nano Lett ; 10(3): 793-8, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20104855

RESUMEN

We report a first-principles study of hydrogen storage media consisting of calcium atoms and graphene-based nanostructures. We find that Ca atoms prefer to be individually adsorbed on the zigzag edge of graphene with a Ca-Ca distance of 10 A without clustering of the Ca atoms, and up to six H(2) molecules can bind to a Ca atom with a binding energy of approximately 0.2 eV/H(2). A Ca-decorated zigzag graphene nanoribbon (ZGNR) can reach the gravimetric capacity of approximately 5 wt % hydrogen. We also consider various edge geometries of the graphene for Ca dispersion.


Asunto(s)
Calcio/química , Grafito/química , Hidrógeno/química , Hidrógeno/aislamiento & purificación , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Cristalización/métodos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
19.
ACS Omega ; 6(41): 27045-27051, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34693124

RESUMEN

Recently, transition metal (TM)-porphyrin-like graphene has been predicted to be a promising material for CO2 capturing under favorable conditions. Such materials can capture CO2 at 300 K and release it at 450 K. However, the captured CO2 gas is mostly stored in oceans. With the aid of first principles calculations, we herein propose a method in which the captured CO2 is converted into an environmentally friendly product, formic acid. Addition of H2 to CO2 molecules adsorbed on Sc- and Ti-porphyrin-like graphene was found to catalyze this conversion. We also performed nudged elastic band calculations and thermodynamic analysis using the first-order Polanyi-Wigner equation and equilibrium statistical mechanics to investigate the chemical reactions involved in this conversion. In addition, we performed Bader charge analysis to obtain insights into the mechanism of charge transfer and adsorption throughout the conversion. Our study presents a novel method in which the captured CO2 is treated by converting it into an environmentally friendly product. Since this method does not require CO2 storage, it is expected to be an effective strategy to manage the rising CO2 level in the environment.

20.
ACS Appl Mater Interfaces ; 13(7): 8727-8735, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33561342

RESUMEN

Van der Waals epitaxy on the surface of two-dimensional (2D) layered crystals has gained significant research interest for the assembly of well-ordered nanostructures and fabrication of vertical heterostructures based on 2D crystals. Although van der Waals epitaxial assembly on the hexagonal phase of transition metal dichalcogenides (TMDCs) has been relatively well characterized, a comparable study on the distorted octahedral phase (1T' or Td) of TMDCs is largely lacking. Here, we investigate the assembly behavior of one-dimensional (1D) AgCN microwires on various distorted TMDC crystals, namely 1T'-MoTe2, Td-WTe2, and 1T'-ReS2. The unidirectional alignment of AgCN chains is observed on these crystals, reflecting the symmetry of underlying distorted TMDCs. Polarized Raman spectroscopy and transmission electron microscopy directly confirm that AgCN chains display the remarkable alignment behavior along the distorted chain directions of underlying TMDCs. The observed unidirectional assembly behavior can be attributed to the favorable adsorption configurations of 1D chains along the substrate distortion, which is supported by our theoretical calculations and observation of similar assembly behavior from different cyanide chains. The aligned AgCN microwires can be harnessed as facile markers to identify polymorphs and crystal orientations of TMDCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA