Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Am J Dent ; 36(4): 183-187, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587028

RESUMEN

PURPOSE: To assess the relief of dentin hypersensitivity of the new toothpaste with stabilized stannous fluoride (SnF2) versus a marketed standard fluoride toothpaste as a negative control and a marketed anhydrous SnF2 toothpaste as a positive control. METHODS: This was a single-centered, randomized, controlled, double blind, clinical trial. 96 participants with hypersensitivity were enrolled in this 4-week clinical study. Electrical stimulation and evaporative air tests were performed to evaluate the desensitization efficacy. Clinical assessments were made at baseline, and after 3 days, 1 week, 2 weeks and 4 weeks of twice-daily brushing. Additionally, the influence of Sn² ⁺ species on desensitization was evaluated using bovine dentin specimens treated with toothpaste. RESULTS: All 96 enrolled participants were randomized. 96 participants completed all evaluations. Participants had an average age (SD) of 47.0 (10.5) years; 45% of participants were female. Both SnF2 toothpastes showed superior desensitization efficacy compared to the negative control toothpaste, the conventional sodium monofluorophosphate (SMFP) toothpaste, after a week. The new stabilized SnF2 toothpaste demonstrated improved electrical stimulation benefits compared to the negative control toothpaste, with increases of 15.1% after 3 days, 34.2% after 1 week, 66.3% after 2 weeks, and 111.6% after 4 weeks. Additionally, it showed relative verbal evaluation scale (VES) benefits of 14.2% after 3 days, 37.6% after 1 week, 28.9% after 2 weeks, and 37.4% after 4 weeks. The stabilized SnF2 toothpaste exhibited desensitization properties comparable to those of a commercial anhydrous SnF2 toothpaste, which typically produces undesirable side effects in the mouth. Toothpastes containing 0.454 % SnF2 exhibited perfect occlusion of dentin tubules. CLINICAL SIGNIFICANCE: The stabilized 0.454% SnF2 toothpaste exhibited significantly greater dentin hypersensitivity relief within only a week and comparable property to commercial anhydrous SnF2 toothpaste.


Asunto(s)
Sensibilidad de la Dentina , Fluoruros de Estaño , Animales , Bovinos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad de la Dentina/tratamiento farmacológico , Fluoruros/uso terapéutico , Fluoruros de Estaño/farmacología , Fluoruros de Estaño/uso terapéutico , Pastas de Dientes/farmacología , Pastas de Dientes/uso terapéutico
2.
Nanotechnology ; 28(10): 105605, 2017 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-28140337

RESUMEN

Perpendicularly attached MoS2 nanosheets on MoO2 conductive nanofibers were synthesized by combining electrospinning, calcination, and sulfurization processes. Compared to randomly stacked MoS2 nanosheets on MoO2 nanofiber, they show greater hydrogen evolution reaction (HER) performance (i.e., onset potential of -180 mV versus normal hydrogen electrode with the Tafel slope of 59 mV dec-1). HER performance decreases with increasing MoS2 nanocrystal size.

3.
Nano Lett ; 16(9): 5928-33, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27552187

RESUMEN

The long-term stability and superior device reliability through the use of delicately designed metal contacts with two-dimensional (2D) atomic-scale semiconductors are considered one of the critical issues related to practical 2D-based electronic components. Here, we investigate the origin of the improved contact properties of alloyed 2D metal-semiconductor heterojunctions. 2D WSe2-based transistors with mixed transition layers containing van der Waals (M-vdW, NbSe2/WxNb1-xSe2/WSe2) junctions realize atomically sharp interfaces, exhibiting long hot-carrier lifetimes of approximately 75,296 s (78 times longer than that of metal-semiconductor, Pd/WSe2 junctions). Such dramatic lifetime enhancement in M-vdW-junctioned devices is attributed to the synergistic effects arising from the significant reduction in the number of defects and the Schottky barrier lowering at the interface. Formation of a controllable mixed-composition alloyed layer on the 2D active channel would be a breakthrough approach to maximize the electrical reliability of 2D nanomaterial-based electronic applications.

4.
Nano Lett ; 16(3): 1890-5, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26839956

RESUMEN

Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

5.
Nanotechnology ; 27(43): 435501, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27658490

RESUMEN

Scalable sub-micrometer molybdenum disulfide ([Formula: see text]) flake films with highly uniform coverage were created using a systematic approach. An electrohydrodynamic (EHD) printing process realized a remarkably uniform distribution of exfoliated [Formula: see text] flakes on desired substrates. In combination with a fast evaporating dispersion medium and an optimal choice of operating parameters, the EHD printing can produce a film rapidly on a substrate without excessive agglomeration or cluster formation, which can be problems in previously reported liquid-based continuous film methods. The printing of exfoliated [Formula: see text] flakes enabled the fabrication of a gas sensor with high performance and reproducibility for [Formula: see text] and [Formula: see text].

6.
Sensors (Basel) ; 15(10): 24903-13, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26404279

RESUMEN

We have investigated the effects of metal decoration on the gas-sensing properties of a device with two-dimensional (2D) molybdenum disulfide (MoS2) flake channels and graphene electrodes. The 2D hybrid-structure device sensitively detected NO2 gas molecules (>1.2 ppm) as well as NH3 (>10 ppm). Metal nanoparticles (NPs) could tune the electronic properties of the 2D graphene/MoS2 device, increasing sensitivity to a specific gas molecule. For instance, palladium NPs accumulate hole carriers of graphene/MoS2, electronically sensitizing NH3 gas molecules. Contrarily, aluminum NPs deplete hole carriers, enhancing NO2 sensitivity. The synergistic combination of metal NPs and 2D hybrid layers could be also applied to a flexible gas sensor. There was no serious degradation in the sensing performance of metal-decorated MoS2 flexible devices before/after 5000 bending cycles. Thus, highly sensitive and endurable gas sensor could be achieved through the metal-decorated 2D hybrid-structure, offering a useful route to wearable electronic sensing platforms.

7.
Front Chem ; 10: 848320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615311

RESUMEN

Greenhouse gases released by agriculture account for 19% of global greenhouse gas emission. Moreover, the abuse of pesticides and fertilizers is a fundamental cause of soil and water pollution. Finding sustainable countermeasures for these problems requires completely new approaches and the integration of knowledge. Precision agriculture (PA) is a technology that reduces environmental pollution with minimal input (e.g., fertilizer, herbicides, and pesticides) and maximize the production of high-quality crops by monitoring the conditions and environment of farmland and crops. However, the lack of data-a key technology for realizing PA-remains a major obstacle to the large-scale adoption of PA. Herein, we discuss important research issues, such as data managements and analysis for accurate decision-making, and specific data acquisition strategies. Moreover, we systematically review and discuss electrochemical sensors, including sensors that monitor the plant, soil, and environmental conditions that directly affect plant growth.

8.
J Nanosci Nanotechnol ; 11(3): 2263-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21449378

RESUMEN

Pure and TiO2- and CdSe-deposited ZnO nanosheets aligned vertically to the surface of ITO (Indium tin oxide) are prepared using electrodeposition, which is used for building blocks of dye sensitized solar cell. A significant improvement in the photovoltaic efficiency can be obtained by depositing TiO2 or CdSe on ZnO. Photoluminescence spectra show that the TiO2 and CdSe nanostructures suppress the recombination of the electron-hole pair of ZnO. We suggest that the interface charge transfer at TiO2-ZnO and CdSe-ZnO should be responsible for the suppression of the electron-hole pair recombination and enhanced solar cell efficiency by TiO2 and CdSe nanostructures.


Asunto(s)
Compuestos de Cadmio/química , Suministros de Energía Eléctrica , Nanoestructuras/química , Nanotecnología/instrumentación , Compuestos de Selenio/química , Energía Solar , Titanio/química , Óxido de Zinc/química , Colorantes/química , Diseño de Equipo , Análisis de Falla de Equipo , Nanoestructuras/ultraestructura
9.
Adv Healthc Mater ; 10(19): e2100806, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34219403

RESUMEN

Due to dissimilarities in genetics and metabolism, current animal models cannot accurately depict human neurological diseases. To develop patient-specific in vitro neural models, a functional material-based technology that offers multi-potent stimuli for enhanced neural tissue development is devised. An electrospun piezoelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) nanofibrous scaffold is systematically optimized to maximize its piezoelectric properties while accommodating the cellular behaviors of neural stem cells. Hydro-acoustic actuation is elegantly utilized to remotely activate the piezoelectric effect of P(VDF-TrFE) scaffolds in a physiologically-safe manner for the generation of cell-relevant electric potentials. This mechano-electrical stimulation, which arose from the deflection of the scaffold and its consequent generation of electric charges on the scaffold surface under hydro-acoustic actuation, induces the multi-phenotypic differentiation of neural stem cells simultaneously toward neuronal, oligodendrocytic, and astrocytic phenotypes. As compared to the traditional biochemically-mediated differentiation, the 3D neuron-glial interface induced by the mechano-electrical stimulation results in enhanced interactions among cellular components, leading to superior neural connectivity and functionality. These results demonstrate the potential of piezoelectric material-based technology for developing functional neural tissues in vitro via effective neural stem cell modulation with multi-faceted regenerative stimuli.


Asunto(s)
Células-Madre Neurales , Animales , Diferenciación Celular , Estimulación Eléctrica , Humanos , Neuroglía , Neuronas
10.
Front Chem ; 8: 574986, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240842

RESUMEN

In this study, a novel chloride ion (Cl-) sensor based on Ag wire coated with an AgCl layer was fabricated using a gel-type internal electrolyte and a diatomite ceramic membrane, which played an important role in preventing electrolyte leakage from the ion-selective electrode. The sensing performance, including reversibility, response, recovery time, low detection limit, and the long-term stability, was systemically investigated in electrolytes with different Cl- contents. The as-fabricated Cl- sensor could detect Cl- from 1 to 500 mM KCl solution with good linearity. The best response and recovery time obtained for the optimized sensor were 0.5 and 0.1 s, respectively, for 10 mM KCl solution. An exposure period of over 60 days was used to evaluate the stability of the Cl- sensor in KCl solution. A relative error of 2% was observed between the initial and final response potentials. Further, a wireless sensing system based on Arduino was also investigated to measure the response potential of Cl- in an electrolyte. The sensor exhibited high reliability with a low standard error of measurement. This type of sensor is crucial for fabricating wireless Cl- sensors for applications in reinforced concrete structures along with favorable performances.

11.
ACS Appl Mater Interfaces ; 10(45): 38663-38668, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30339351

RESUMEN

We prepare three-dimensional honeycomb-like Cu0.81Co2.19O4 nanosheet arrays supported by Ni foam via electrochemical codeposition of cobalt and copper hydroxides on Ni foam followed by thermal oxidation. The codeposition with Cu changes the morphology of the cobalt hydroxide deposit to form honeycomb-like nanostructures, significantly decreasing the onset potential for oxygen evolution. The Cu0.81Co2.19O4 anode displays an exceptionally low overpotential of 290 mV at a current density of 10 mA cm-2 in 1 M KOH, and an anion-exchange membrane water electrolysis cell employing the above anode achieves a current density of 100 mA cm-2 at 1.68 V in 0.1 M KOH.

12.
ACS Appl Mater Interfaces ; 9(42): 37146-37153, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28976735

RESUMEN

Molybdenum disulfide with atomic-scale flatness has application potential in high-speed and low-power logic devices owing to its scalability and intrinsic high mobility. However, to realize viable technologies based on two-dimensional materials, techniques that enable their large-area growth with high quality and uniformity on wafer cale is a prerequisite. Here, we provide a route toward highly uniform growth of a wafer-scale, four-layered MoS2 film on a 2 in. substrate via a sequential process consisting of the deposition of a molybdenum trioxide precursor film by sputtering followed by postsulfurization using a chemical vapor deposition process. Spatial spectroscopic analyses by Raman and PL mapping validated that the as-synthesized MoS2 thin films exhibit high uniformity on a 2 in. sapphire substrate. The highly uniform MoS2 layers allow a successful integration of devices based on ∼1200 MoS2 transistor arrays with a yield of 95% because of their extreme homogeneity on Si wafers. Moreover, a pulse electrical measurement technique enabled investigation of the inherent physical properties of the atomically thin MoS2 layers by minimizing the charge-trapping effect. Such a facile synthesis method can be possibly applied to other 2D transition metal dichalcogenides to ultimately realize the chip integration of device architectures with all 2D-layered building blocks.

13.
ACS Appl Mater Interfaces ; 8(30): 19635-42, 2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27388231

RESUMEN

We first report that two-dimensional (2D) metal (NbSe2)-semiconductor (WSe2)-based flexible, wearable, and launderable gas sensors can be prepared through simple one-step chemical vapor deposition of prepatterned WO3 and Nb2O5. Compared to a control device with a Au/WSe2 junction, gas-sensing performance of the 2D NbSe2/WSe2 device was significantly enhanced, which might have resulted from the formation of a NbxW1-xSe2 transition alloy junction lowering the Schottky barrier height. This would make it easier to collect charges of channels induced by molecule adsorption, improving gas response characteristics toward chemical species including NO2 and NH3. 2D NbSe2/WSe2 devices on a flexible substrate provide gas-sensing properties with excellent durability under harsh bending. Furthermore, the device stitched on a T-shirt still performed well even after conventional cleaning with a laundry machine, enabling wearable and launderable chemical sensors. These results could pave a road toward futuristic gas-sensing platforms based on only 2D materials.

14.
Org Lett ; 7(18): 3993-6, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16119950

RESUMEN

A m-xylene-bridged imidazolium receptor, 1, has been designed and synthesized. The receptor 1 utilizes two imidazole (C-H)(+)- - -anion hydrogen bonds and one benzene hydrogen- - -anion hydrogen bond. The major driving force of complexation between the receptor 1 and anions comes from two imidazole (C-H)(+)- - -anion hydrogen bonds. However, both NMR experiments and ab initio calculations show that the benzene hydrogen attracts the anion guests, clearly indicating benzene (C-H)- - -anion hydrogen bonding. [reaction: see text]

15.
Nanoscale ; 7(1): 365, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25424730

RESUMEN

Correction for 'Three-dimensional hierarchical Te-Si nanostructures' by Jae-Hong Lim et al., Nanoscale, 2014, 6, 11697-11702.

16.
ACS Appl Mater Interfaces ; 7(30): 16775-80, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26161691

RESUMEN

We report the production of a two-dimensional (2D) heterostructured gas sensor. The gas-sensing characteristics of exfoliated molybdenum disulfide (MoS2) connected to interdigitated metal electrodes were investigated. The MoS2 flake-based sensor detected a NO2 concentration as low as 1.2 ppm and exhibited excellent gas-sensing stability. Instead of metal electrodes, patterned graphene was used for charge collection in the MoS2-based sensing devices. An equation based on variable resistance terms was used to describe the sensing mechanism of the graphene/MoS2 device. Furthermore, the gas response characteristics of the heterostructured device on a flexible substrate were retained without serious performance degradation, even under mechanical deformation. This novel sensing structure based on a 2D heterostructure promises to provide a simple route to an essential sensing platform for wearable electronics.

17.
Biomaterials ; 24(13): 2257-66, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12699662

RESUMEN

Ti and Ti-based alloys have been widely used for the biomedical applications due to their superiorities of biocompatibility, mechanical properties and corrosion resistance. However, there has been the limiting factor for these metals to show the low affinity to the living bone. Most of commercially used Ti alloys have harmful alloying elements such as Al, V, etc. The purposes of this study are design of new Ti alloy having the good mechanical properties and corrosion resistivity without harmful alloying elements and to improve the bone-bonding ability between Ti-based alloy and living bone through the chemically activated process (alkali treatment) and thermally activated one (heat treatment). Mechanical properties of the Ti-In-Nb-Ta alloy were observed by tensile test (Instron model 8511). Corrosion potential and corrosion rate were investigated using a Potentiostate machine (EG&G, Princeton Applied Model 273, Boston, USA) with saline solution (9% NaCl) without dissolved oxygen at 37 degrees C. After alkali and heat treatments, the effects of the pre-treatments on the bonding property were evaluated by in vitro test. In this study, the surface changing behavior, which is apatite formation, of newly designed Ti-In-Nb-Ta alloy without harmful alloying elements was investigated through analyzing its surface by using X-ray photoelectron spectroscopy after surface activation treatments (alkali and heat treatments) and after subsequent soaking in the simulated body fluid.


Asunto(s)
Aleaciones/química , Líquidos Corporales/química , Materiales Biocompatibles Revestidos/química , Ensayo de Materiales , Espectrometría por Rayos X , Álcalis/química , Aleaciones/síntesis química , Materiales Biocompatibles Revestidos/síntesis química , Corrosión , Elasticidad , Calor , Materiales Manufacturados , Microscopía Electrónica de Rastreo , Estrés Mecánico , Propiedades de Superficie , Resistencia a la Tracción
18.
J Biomed Mater Res A ; 69(2): 279-85, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15058000

RESUMEN

The geometric design and chemical compositions of an implant surface may have an important part in affecting early implant stabilization and influencing tissue healing. In this study, in vivo behavior and mechanical stability in implants of three surface designs, which were smooth surface (SS), rough titanium (Ti) surface by plasma spray coating (PSC), and alkali- and heat-treated (AHT) Ti surface after plasma spray coating, were compared by histological and mechanical analyses. Surface morphologies of the implants were observed by optical microscopy and scanning electron microscopy. Chemical compositional surface changes were investigated by energy dispersive spectroscopy. The implants were inserted transversely in a dog thighbone and evaluated at 4 weeks of healing. At 4 weeks of healing after implantation in bone, the healing tissue was more extensively integrated with an AHT implant than with the implants of smooth (SS) and/or rough Ti surfaces (PSC). The bone bonding strength (pull-out force) between living bone and implant was observed by a universal testing machine. At 4 weeks' healing after implant placement in bone, the pull-out forces of the SS, PSC, and AHT implants were 235 (+/-34.25), 710 (+/-142.25), and 823 (+/-152.22) N, respectively. Histological and mechanical data demonstrate that appropriate surface design selection can improve early bone growth and induce an acceleration of the healing response, thereby improving the potential for implant osseointegration.


Asunto(s)
Sustitutos de Huesos , Materiales Biocompatibles Revestidos , Prótesis e Implantes , Titanio , Animales , Regeneración Ósea , Perros , Durapatita , Calor , Microscopía Electrónica de Rastreo , Estrés Mecánico
19.
Nanoscale ; 6(20): 11697-702, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24988904

RESUMEN

Three-dimensional hybrid nanostructures (i.e., Te "nanobranches" on a Si "nanotrunk" or Te "nanoleaves" on a Si "nanotrunk") were synthesized by combining the gold-assisted chemical etching of Si to form Si "nanotrunks" and the galvanic displacement of Si to form Te "nanobranches" or "nanoleaves." By adjusting the composition of the electrolyte used for the galvanic displacement reaction, the shape of the Te nanostructures could be changed from nanoleaves to nanobranches. The Si nanotrunks with Te nanobranches showed stronger luminescent emission in the visible region, with their Raman spectrum having a higher wave number, owing to their grain size being larger. This suggested that the optical and photoelectrochemical properties of Te-Si hybrid nanostructures depend on their shape and size. Using this approach, it should be possible to fabricate various hierarchical nanostructures for use in photoelectronic and photoelectrochemical devices.

20.
Nanoscale ; 5(4): 1616-23, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23334800

RESUMEN

A facile electrodeposition technique was utilized to deposit single-walled carbon nanotubes (SWNTs) with cadmium telluride (CdTe) with well-controlled size, density, surface morphology, and composition. By controlling the applied charge, the morphology of these hybrid nanostructures was altered from CdTe nanoparticles on SWNTs to SWNT/CdTe core/shell nanostructures and the composition of the CdTe nanoparticles was altered from Te-rich (29 at% Cd) to Cd-rich (79 at% Cd) CdTe by adjusting the deposition potential. The electrical and optoelectrical properties of these hybrid nanostructures showed that photo-induced current can be tuned by tailoring the conductivity type (n-type or p-type), morphology, and size of the CdTe nanostructures, with a maximum photosensitivity (ΔI/I(0)) of about 30% for SWNT/Cd-rich CdTe (n-type) core/shell nanostructures. This work demonstrates a novel approach for synthesizing metal chalcogenide/SWNT hybrid nanostructures for various electrical and optoelectrical applications.


Asunto(s)
Compuestos de Cadmio/química , Nanotubos de Carbono/química , Nanotubos de Carbono/efectos de la radiación , Telurio/química , Compuestos de Cadmio/efectos de la radiación , Conductividad Eléctrica , Campos Electromagnéticos , Galvanoplastia , Luz , Ensayo de Materiales , Nanotubos de Carbono/ultraestructura , Dosis de Radiación , Refractometría/métodos , Telurio/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA