Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO J ; 36(13): 1963-1980, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28507225

RESUMEN

Tissue homeostasis of skin is sustained by epidermal progenitor cells localized within the basal layer of the skin epithelium. Post-translational modification of the proteome, such as protein phosphorylation, plays a fundamental role in the regulation of stemness and differentiation of somatic stem cells. However, it remains unclear how phosphoproteomic changes occur and contribute to epidermal differentiation. In this study, we survey the epidermal cell differentiation in a systematic manner by combining quantitative phosphoproteomics with mammalian kinome cDNA library screen. This approach identified a key signaling event, phosphorylation of a desmosome component, PKP1 (plakophilin-1) by RIPK4 (receptor-interacting serine-threonine kinase 4) during epidermal differentiation. With genome-editing and mouse genetics approach, we show that loss of function of either Pkp1 or Ripk4 impairs skin differentiation and enhances epidermal carcinogenesis in vivo Phosphorylation of PKP1's N-terminal domain by RIPK4 is essential for their role in epidermal differentiation. Taken together, our study presents a global view of phosphoproteomic changes that occur during epidermal differentiation, and identifies RIPK-PKP1 signaling as novel axis involved in skin stratification and tumorigenesis.


Asunto(s)
Diferenciación Celular , Queratinocitos/fisiología , Placofilinas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Piel/citología , Células Madre/fisiología , Animales , Carcinogénesis , Células Cultivadas , Perfilación de la Expresión Génica , Ratones , Ratones Noqueados , Fosforilación , Proteoma/análisis , Neoplasias Cutáneas , Trasplante de Tejidos
2.
Semin Cell Dev Biol ; 69: 18-25, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28577925

RESUMEN

At the surface of the body, the epidermis covers great depth in its developmental regulation. While many genes have been shown to be important for skin development through their associations with disease phenotypes in mice and human, it is in the past decade that the intricate interplay between various molecules become gradually revealed through sophisticated genetic models and imaging analyses. In particular, there is increasing evidence suggesting that cytoskeleton-associated proteins, including adhesion proteins and the crosslinker proteins may play critical roles in regulating epidermis development. We here provide a broad overview of the various molecules involved in epidermal development with special emphasis on the cytoskeletal components.


Asunto(s)
Citoesqueleto/metabolismo , Epidermis/embriología , Epidermis/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo
3.
Mol Pharm ; 13(9): 3098-105, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27453125

RESUMEN

When administering several anticancer drugs within a single carrier, it is important to regulate their spatial distribution so as to avoid possible mutual interference and to thus enhance the drugs' selectivity and efficiency. To achieve this, we proposed to develop human serum albumin (HSA)-based multidrug delivery systems for combination anticancer therapy. We used three anticancer agents (an organic drug [5-fluorouracil, or 5FU], a metallic agent [2-benzoylpyridine thiosemicarbazide copper II, or BpT], and a gene agent [AS1411]) to treat liver cancer and confirm our hypothesis. The structure of the HSA-palmitic acid (PA)-5FU-BpT complex revealed that 5FU and BpT, respectively, bind to the IB and IIA subdomains of HSA. Our MALDI-TOF-MS spectral data show that one AS1411 molecule is conjugated to Cys-34 of the HSA-5FU-BpT complex via a linker. Compared with unregulated three-drug combination therapy, the HSA-5FU-BpT-AS1411 complex enhances cytotoxicity in Bel-7402 cells approximately 7-fold in vitro; however, in normal cells it does not raise cytotoxicity levels. Importantly, our in vivo results demonstrate that the HSA-5FU-BpT-AS1411 complex is superior to the unregulated three-drug combination in enhancing targeting ability, inhibiting liver tumor growth, and causing fewer side effects.


Asunto(s)
Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Fluorouracilo/uso terapéutico , Albúmina Sérica/química , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Fluorouracilo/química , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Ratones Endogámicos BALB C , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Nat Commun ; 7: 11692, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216888

RESUMEN

Turnover of focal adhesions allows cell retraction, which is essential for cell migration. The mammalian spectraplakin protein, ACF7 (Actin-Crosslinking Factor 7), promotes focal adhesion dynamics by targeting of microtubule plus ends towards focal adhesions. However, it remains unclear how the activity of ACF7 is regulated spatiotemporally to achieve focal adhesion-specific guidance of microtubule. To explore the potential mechanisms, we resolve the crystal structure of ACF7's NT (amino-terminal) domain, which mediates F-actin interactions. Structural analysis leads to identification of a key tyrosine residue at the calponin homology (CH) domain of ACF7, whose phosphorylation by Src/FAK (focal adhesion kinase) complex is essential for F-actin binding of ACF7. Using skin epidermis as a model system, we further demonstrate that the phosphorylation of ACF7 plays an indispensable role in focal adhesion dynamics and epidermal migration in vitro and in vivo. Together, our findings provide critical insights into the molecular mechanisms underlying coordinated cytoskeletal dynamics during cell movement.


Asunto(s)
Movimiento Celular/fisiología , Epidermis/fisiología , Adhesiones Focales/metabolismo , Proteínas de Microfilamentos/fisiología , Actinas/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Cristalografía por Rayos X , Células Epidérmicas , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células HEK293 , Humanos , Queratinocitos , Ratones , Ratones Desnudos , Proteínas de Microfilamentos/química , Microtúbulos/metabolismo , Modelos Animales , Fosforilación , Cultivo Primario de Células , Unión Proteica , Dominios Proteicos , Imagen de Lapso de Tiempo , Tirosina/metabolismo , Cicatrización de Heridas/fisiología , Familia-src Quinasas/metabolismo
5.
Curr Pharm Des ; 21(14): 1862-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25732553

RESUMEN

Human serum albumin (HSA) regulates the transport and availability of numerous chemical compounds and molecules in the blood vascular system. While previous HSA research has found that HSA interacts with specific varieties of ligands, new research efforts aim to expand HSA's ability to interact with more different drugs in order to improve the delivery of various pharmacological drugs. This review will cover fatty acid chain and posttranslational modifications of HSA that potentially modulate how HSA interacts with various pharmacological drugs, including glycation, cysteinylation, S-nitrosylation, S-transnitrosation and S-guanylation.


Asunto(s)
Albúmina Sérica/química , Albúmina Sérica/metabolismo , Animales , Humanos , Unión Proteica/fisiología , Conformación Proteica , Estructura Terciaria de Proteína
6.
Chem Biol Drug Des ; 86(5): 1178-84, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25958880

RESUMEN

Human serum albumin (HSA) is the most abundant protein in plasma, which plays a central role in drug pharmacokinetics because most compounds bound to HSA in blood circulation. To understand binding characterization of non-steroidal anti-inflammatory drugs to HSA, we resolved the structure of diclofenac and HSA complex by X-ray crystallography. HSA-palmitic acid-diclofenac structure reveals two distinct binding sites for three diclofenac in HSA. One diclofenac is located at the IB subdomain, and its carboxylate group projects toward polar environment, forming hydrogen bond with one water molecule. The other two diclofenac molecules cobind in big hydrophobic cavity of the IIA subdomain without interactive association. Among them, one binds in main chamber of big hydrophobic cavity, and its carboxylate group forms hydrogen bonds with Lys199 and Arg218, as well as one water molecule, whereas another diclofenac binds in side chamber, its carboxylate group projects out cavity, forming hydrogen bond with Ser480.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Diclofenaco/metabolismo , Albúmina Sérica/metabolismo , Antiinflamatorios no Esteroideos/química , Sitios de Unión , Cristalografía por Rayos X , Diclofenaco/química , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Albúmina Sérica/química
7.
Chem Biol Drug Des ; 83(2): 167-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24033934

RESUMEN

To investigate the interactions between natural drugs and human serum albumin (HSA), we performed fluorescence spectroscopy and X-ray crystallography to gain insight into binding mechanism and behaviour of rhein to HSA. Our fluorescence results demonstrated that rhein strongly binds with HSA, and other compounds may affect binding affinity of rhein to different extent. Structural analysis revealed that rhein binds to the IIA subdomain of HSA. The carboxylate group of rhein forms hydrogen bonds with Arg218 and Lys199, as well as a salt bond with Arg222. Hydroxyl group (4) of rhein forms a hydrogen bond with His242, and hydroxyl group (5) of rhein forms a hydrogen bond with Arg257. Oxygen atom (7) of rhein forms a hydrogen bond with Arg222, and oxygen atom (6) of rhein forms a hydrogen bond with H2O. Furthermore, hydroxyl group (4) of rhein also forms a hydrogen bond with H2O. Our results reveal the biochemical and structural characteristics of the interaction between rhein and HSA, providing guidance for future development of rhein-based compounds and a drug-HSA delivery system.


Asunto(s)
Antraquinonas/metabolismo , Albúmina Sérica/metabolismo , Antraquinonas/química , Sitios de Unión , Cristalografía por Rayos X , Fluorometría , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Unión Proteica , Estructura Terciaria de Proteína , Albúmina Sérica/química , Agua/química
8.
Dev Cell ; 31(5): 572-85, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25490267

RESUMEN

Disassembly of focal adhesions (FAs) allows cell retraction and integrin detachment from the extracellular matrix, processes critical for cell movement. Growth of microtubules (MTs) can promote FA turnover by serving as tracks to deliver proteins essential for FA disassembly. The molecular nature of this FA "disassembly factor," however, remains elusive. By quantitative proteomics, we identified mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) as an FA regulator that associates with MTs. Knockout of MAP4K4 stabilizes FAs and impairs cell migration. By exploring underlying mechanisms, we further show that MAP4K4 associates with ending binding 2 (EB2) and IQ motif and SEC7 domain-containing protein 1 (IQSEC1), a guanine nucleotide exchange factor specific for Arf6, whose activation promotes integrin internalization. Together, our findings provide critical insight into FA disassembly, suggesting that MTs can deliver MAP4K4 toward FAs through EB2, where MAP4K4 can, in turn, activate Arf6 via IQSEC1 and enhance FA dissolution.


Asunto(s)
Adhesiones Focales/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Quinasa de Factor Nuclear kappa B
9.
J Pharm Sci ; 102(1): 84-92, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23108589

RESUMEN

Human serum albumin (HSA) is a major protein component of blood plasma that has been exploited to bind and transport a wide variety of endogenous and exogenous organic compounds. Although anionic drugs readily associate with the IIA subdomain of HSA, most cationic drugs poorly associate with HSA at this subdomain. In this study, we propose to improve the association between cationic drugs and HSA by modifying HSA with fatty acid chains. For our experiments, we tested amantadine hydrochloride, a cationic drug with antiviral and antiparkinsonian effects. Our results suggest that extensive myristoylation of HSA can help stabilize the interaction between amantadine and HSA in vitro. Our X-ray crystallography data further elucidate the structural basis of this regulation. Additionally, our crystallography data suggest that anionic drugs, with a functional carboxylate group, may enhance the association between amantadine and HSA by a mechanism similar to myristoylation. Ultimately, our results provide critical structural insight into this novel association between cationic drugs and the HSA IIA subdomain, raising the tempting possibility to fully exploit the unique binding capacity of HSA's IIA subdomain to achieve simultaneous delivery of anionic and cationic drugs.


Asunto(s)
Amantadina/metabolismo , Antiparkinsonianos/metabolismo , Antivirales/metabolismo , Ácidos Mirísticos/metabolismo , Albúmina Sérica/metabolismo , Amantadina/química , Antiparkinsonianos/química , Antivirales/química , Sitios de Unión , Cationes , Cristalografía por Rayos X , Portadores de Fármacos , Humanos , Modelos Moleculares , Estructura Molecular , Ácidos Mirísticos/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Albúmina Sérica/química , Albúmina Sérica Humana , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA