Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Jpn J Clin Oncol ; 52(3): 266-273, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-34958091

RESUMEN

OBJECTIVE: To propose and evaluate an active method for sparing the small bowel in the treatment field of cervical cancer brachytherapy by prone position procedure. METHODS: The prone position procedure consists of five steps: making bladder empty, prone-positioning a patient on belly board, making the small bowel move to abdomen, filling the bladder with Foley catheter and finally turning the patient into the supine position. The proposed method was applied for the treatment of seven cervical cancer patients. Its effectiveness was evaluated and a correlation between the patient characteristics and the volumetric dose reduction of small bowel was also investigated. Brachytherapy treatment plans were built before and after the proposed method, and their dose-volume histograms were compared for targets and organs-at-risk. In this comparison, all plans were normalized to satisfy the same D90% for high-risk clinical target volume. RESULTS: For the enrolled patients, the average dose of small bowel was significantly reduced from 75.2 ± 4.9 Gy before to 60.2 ± 4.0 Gy after the prone position procedure, while minor dosimetric changes were observed in rectum, sigmoid and bladder. The linear correlation to body mass index, thickness and width of abdominopelvic cavity and bladder volume were 76.2, 69.7, 28.8 and -36.3%, respectively. CONCLUSIONS: The application of prone position procedure could effectively lower the volumetric dose of the small bowel. The dose reduction in the small bowel had a strong correlation with the patient's obesity and abdominal thickness. This means the patients for whom the proposed method would be beneficial can be judiciously selected for safe brachytherapy.


Asunto(s)
Braquiterapia , Neoplasias del Cuello Uterino , Abdomen , Braquiterapia/métodos , Femenino , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Recto , Neoplasias del Cuello Uterino/radioterapia
2.
Sensors (Basel) ; 22(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35957376

RESUMEN

Several detectors have been developed to measure radiation doses during radiotherapy. However, most detectors are not flexible. Consequently, the airgaps between the patient surface and detector could reduce the measurement accuracy. Thus, this study proposes a dose measurement system based on a flexible copper indium gallium selenide (CIGS) solar cell. Our system comprises a customized CIGS solar cell (with a size 10 × 10 cm2 and thickness 0.33 mm), voltage amplifier, data acquisition module, and laptop with in-house software. In the study, the dosimetric characteristics, such as dose linearity, dose rate independence, energy independence, and field size output, of the dose measurement system in therapeutic X-ray radiation were quantified. For dose linearity, the slope of the linear fitted curve and the R-square value were 1.00 and 0.9999, respectively. The differences in the measured signals according to changes in the dose rates and photon energies were <2% and <3%, respectively. The field size output measured using our system exhibited a substantial increase as the field size increased, contrary to that measured using the ion chamber/film. Our findings demonstrate that our system has good dosimetric characteristics as a flexible in vivo dosimeter. Furthermore, the size and shape of the solar cell can be easily customized, which is an advantage over other flexible dosimeters based on an a-Si solar cell.


Asunto(s)
Cobre , Indio , Galio , Humanos , Dosis de Radiación , Radiometría , Selenio , Rayos X
3.
J Appl Clin Med Phys ; 22(2): 69-76, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33433064

RESUMEN

PURPOSE: In passive scattering proton beam therapy, scattered protons from the snout and aperture increase the superficial dose, however, treatment planning systems (TPSs) based on analytic algorithms (such as proton convolution superposition) are often inaccurate in this aspect. This additional dose can cause permanent alopecia or severe radiation dermatitis. This study aimed to evaluate the effect of bolus on the superficial radiation dose in passive scattering proton beam therapy. METHODS: We drew a clinical target volume (CTV) and a scalp-p (phantom), and created plans using a TPS for a solid water phantom with and without bolus. We calculated the dose distribution in the established plans independently with Monte Carlo (MC) simulation and measured the actual dose distribution with an array of ion chambers and radiochromic films. To assess the clinical impact of bolus on scalp dose, we conducted independent dose verification using MC simulation in a clinical case. RESULTS: In the solid water phantom without bolus, the calculated scalp-p volume receiving 190 cGy was 20% with TPS but 80% with MC simulation when the CTV received 200 cGy. With 2 cm bolus, this decreased from 80% to 10% in MC simulation. With the measurements, average superficial dose to the scalp-p was reduced by 5.2% when 2 cm bolus was applied. In the clinical case, the scalp-c (clinical) volume receiving 3000 cGy decreased from 74% to 63% when 2 cm bolus was applied. CONCLUSION: This study revealed that bolus can reduce radiation dose at the superficial body area and alleviate toxicity in passive scattering proton beam therapy.


Asunto(s)
Terapia de Protones , Algoritmos , Humanos , Método de Montecarlo , Fantasmas de Imagen , Dosis de Radiación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Dispersión de Radiación
4.
J Appl Clin Med Phys ; 22(6): 104-118, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34036701

RESUMEN

The present study verified and evaluated the dosimetric effects of protons scattered from a snout and an aperture in clinical practice, when a range compensator was included. The dose distribution calculated by a treatment planning system (TPS) was compared with the measured dose distribution and the dose distribution calculated by Monte Carlo simulation at several depths. The difference between the measured and calculated results was analyzed using Monte Carlo simulation with filtration of scattering in the snout and aperture. The dependence of the effects of scattered protons on snout size, beam range, and minimum thickness of the range compensator was also investigated using the Monte Carlo simulation. The simulated and measured results showed that the additional dose compared with the results calculated by the TPS at shallow depths was mainly due to protons scattered by the snout and aperture. This additional dose was filtered by the structure of the range compensator so that it was observed under the thin region of the range compensator. The maximum difference was measured at a depth of 16 mm (8.25%), with the difference decreasing with depth. Analysis of protons contributing to the additional dose showed that the contribution of protons scattered from the snout was greater than that of protons scattered from the aperture when a narrow snout was used. In the Monte Carlo simulation, this effect of scattered protons was reduced when wider snouts and longer-range proton beams were used. This effect was also reduced when thicker range compensator bases were used, even with a narrow snout. This study verified the effect of scattered protons even when a range compensator was included and emphasized the importance of snout-scattered protons when a narrow snout is used for small fields. It indicated that this additional dose can be reduced by wider snouts, longer range proton beams, and thicker range compensator bases. These results provide a better understanding of the additional dose from scattered protons in clinical practice.


Asunto(s)
Terapia de Protones , Simulación por Computador , Humanos , Método de Montecarlo , Protones , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
5.
J Appl Clin Med Phys ; 21(8): 191-199, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32515552

RESUMEN

PURPOSE: Imaging, breath-holding/gating, and fixation devices have been developed to minimize setup errors so that the prescribed dose can be exactly delivered to the target volume in radiotherapy. Despite these efforts, additional patient monitoring devices have been installed in the treatment room to view patients' whole-body movement. We developed a facial expression recognition system using deep learning with a convolutional neural network (CNN) to predict patients' advanced movement, enhancing the stability of the radiation treatment by giving warning signs to radiation therapists. MATERIALS AND METHODS: Convolutional neural network model and extended Cohn-Kanade datasets with 447 facial expressions of source images for training were used. Additionally, a user interface that can be used in the treatment control room was developed to monitor real-time patient's facial expression in the treatment room, and the entire system was constructed by installing a camera in the treatment room. To predict the possibility of patients' sudden movement, we categorized facial expressions into two groups: (a) uncomfortable expressions and (b) comfortable expressions. We assumed that the warning sign about the sudden movement was given when the uncomfortable expression was recognized. RESULTS: We have constructed the facial expression monitoring system, and the training and test accuracy were 100% and 85.6%, respectively. In 10 patients, their emotions were recognized based on their comfortable and uncomfortable expressions with 100% detection rate. The detected various emotions were represented by a heatmap and motion prediction accuracy was analyzed for each patient. CONCLUSION: We developed a system that monitors the patient's facial expressions and predicts patient's advanced movement during the treatment. It was confirmed that our patient monitoring system can be complementarily used with the existing monitoring system. This system will help in maintaining the initial setup and improving the accuracy of radiotherapy for the patients using deep learning in radiotherapy.


Asunto(s)
Aprendizaje Profundo , Expresión Facial , Humanos , Monitoreo Fisiológico , Movimiento , Redes Neurales de la Computación
6.
Acta Oncol ; 57(10): 1359-1366, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30004264

RESUMEN

BACKGROUND: The aim of the present study was to verify the dosimetric accuracy of two-dimensional (2D) in vivo rectal dosimetry using an endorectal balloon (ERB) with unfoldable EBT3 films for high-dose-rate (HDR) brachytherapy for cervical cancer. The clinical applicability of the technique was discussed. MATERIAL AND METHODS: ERB inflation makes the EBT3 films unrolled, whereas its deflation makes them rolled. Patient-specific quality assurance (pQA) tests were performed in 20 patient plans using an Ir-192 remote afterloading system and a water-filled cervical phantom with the ERB. The dose distributions measured in ERBs were compared with those of the treatment plans. RESULTS: The absolute dose profiles measured by the ERBs were in good agreement with those of treatment plans. The global gamma passing rates were 96-100% and 91-100% over 20 pQAs under the criteria of 3%/3 mm and 3%/2 mm, respectively, with a 30% low-dose threshold. Dose-volume histograms of the rectal wall were obtained from the measured dose distributions and showed small volume differences less than 2% on average from the patients' plans over the entire dose interval. The positioning error of the applicator set was detectable with high sensitivity of 12% dose area variation per mm. Additionally, the clinical applicability of the ERB was evaluated in volunteers, and none of them felt any pain when the ERB was inserted or removed. CONCLUSIONS: The 2D in vivo rectal dosimetry using the ERB with EBT3 films was effective and might be clinically applicable for HDR brachytherapy for cervical and prostate cancers to monitor treatment accuracy and consistency as well as to predict rectal toxicity.


Asunto(s)
Braquiterapia/métodos , Recto/efectos de la radiación , Neoplasias del Cuello Uterino/radioterapia , Femenino , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica
7.
Sensors (Basel) ; 18(1)2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29342941

RESUMEN

This study describes the development of a beam monitoring system for the verification of entrance dose map in pencil beam scanning (PBS) proton therapy based on fiber optic radiation sensors (FORS) and the validation of this system through a feasibility study. The beam monitoring system consisted of 128 optical fibers optically coupled to photo-multiplier tubes. The performance of the beam monitoring system based on FORS was verified by comparing 2D dose maps of square-shaped fields of various sizes, which were obtained using conventional dosimeters such as MatriXX and EBT3 film, with those measured using FORS. The resulting full-width at half maximum and penumbra were compared for PBS proton beams, with a ≤2% difference between each value, indicating that measurements using the conventional dosimetric tool corresponded to measurements based on FORS. For irregularly-shaped fields, a comparison based on the gamma index between 2D dose maps obtained using MatriXX and EBT3 film and the 2D dose map measured by the FORS showed passing rates of 96.9 ± 1.3% and 96.2 ± 1.9%, respectively, confirming that FORS-based measurements for PBS proton therapy agreed well with those measured using the conventional dosimetric tools. These results demonstrate that the developed beam monitoring system based on FORS is good candidate for monitoring the entrance dose map in PBS proton therapy.

8.
J Appl Clin Med Phys ; 17(1): 49-61, 2016 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-26894331

RESUMEN

The aim of this study is to develop a new method to align the patient setup lasers in a radiation therapy treatment room and examine its validity and efficiency. The new laser alignment method is realized by a device composed of both a metallic base plate and a few acrylic transparent plates. Except one, every plate has either a crosshair line (CHL) or a single vertical line that is used for alignment. Two holders for radiochromic film insertion are prepared in the device to find a radiation isocenter. The right laser positions can be found optically by matching the shadows of all the CHLs in the gantry head and the device. The reproducibility, accuracy, and efficiency of laser alignment and the dependency on the position error of the light source were evaluated by comparing the means and the standard deviations of the measured laser positions. After the optical alignment of the lasers, the radiation isocenter was found by the gantry and collimator star shots, and then the lasers were translated parallel to the isocenter. In the laser position reproducibility test, the mean and standard deviation on the wall of treatment room were 32.3 ± 0.93 mm for the new method whereas they were 33.4 ± 1.49 mm for the conventional method. The mean alignment accuracy was 1.4 mm for the new method, and 2.1 mm for the conventional method on the walls. In the test of the dependency on the light source position error, the mean laser position was shifted just by a similar amount of the shift of the light source in the new method, but it was greatly magnified in the conventional method. In this study, a new laser alignment method was devised and evaluated successfully. The new method provided more accurate, more reproducible, and faster alignment of the lasers than the conventional method.


Asunto(s)
Rayos Láser/normas , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Errores de Configuración en Radioterapia/prevención & control , Humanos , Radioterapia de Intensidad Modulada
9.
Strahlenther Onkol ; 191(4): 321-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25339310

RESUMEN

PURPOSE: We retrospectively compared the treatment outcomes of localized prostate cancer between radical prostatectomy (RP) and external beam radiotherapy (EBRT). MATERIALS AND METHODS: We retrospectively analyzed 738 patients with localized prostate cancer who underwent either RP (n = 549) or EBRT (n = 189) with curative intent at our institution between March 2001 and December 2011. Biochemical failure was defined as a prostate-specific antigen (PSA) level of ≥ 0.2 ng/ml in the RP group and the nadir of + ≥ 2 ng/ml in the EBRT group. RESULTS: The median (range) follow-up duration was 48.8 months (0.7-133.2 months) and 48.7 months (1.0-134.8 months) and the median age was 66 years (45-89 years) and 71 years (51-84 years; p < 0.001) in the RP and EBRT groups, respectively. Overall, 21, 42, and 36 % of patients in the RP group, and 15, 27, and 58 % of patients in the EBRT group were classified as low, intermediate, and high risk, respectively (p < 0.001). Androgen-deprivation therapy was more common in the EBRT group (59 vs. 27 %, respectively; p < 0.001). The 8-year biochemical failure-free survival rates were 44 and 72 % (p < 0.001) and the disease-specific survival rates were 98 % and 97 % (p = 0.543) in the RP and EBRT groups, respectively. CONCLUSIONS: Although the EBRT group included more high-risk patients than did the RP group, the outcomes of EBRT were not inferior to those of RP. Our data suggest that EBRT is a viable alternative to RP for treating localized prostate cancer.


Asunto(s)
Recurrencia Local de Neoplasia/prevención & control , Prostatectomía/métodos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/terapia , Radioterapia Conformacional/métodos , Anciano , Anciano de 80 o más Años , Supervivencia sin Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/diagnóstico , Estudios Retrospectivos , Resultado del Tratamiento
10.
Radiol Oncol ; 49(3): 307-13, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26401138

RESUMEN

BACKGROUND: This study was designed to compare the quality assurance (QA) results of four dosimetric tools used for intensity modulated radiation therapy (IMRT) and to suggest universal criteria for the passing rate in QA, irrespective of the dosimetric tool used. MATERIALS AND METHODS: Thirty fields of IMRT plans from five patients were selected, followed by irradiation onto radiochromic film, a diode array (Mapcheck), an ion chamber array (MatriXX) and an electronic portal imaging device (EPID) for patient-specific QA. The measured doses from the four dosimetric tools were compared with the dose calculated by the treatment planning system. The passing rates of the four dosimetric tools were calculated using the gamma index method, using as criteria a dose difference of 3% and a distance-to-agreement of 3 mm. RESULTS: The QA results based on Mapcheck, MatriXX and EPID showed good agreement, with average passing rates of 99.61%, 99.04% and 99.29%, respectively. However, the average passing rate based on film measurement was significantly lower, 95.88%. The average uncertainty (1 standard deviation) of passing rates for 6 intensity modulated fields was around 0.31 for film measurement, larger than those of the other three dosimetric tools. CONCLUSIONS: QA results and consistencies depend on the choice of dosimetric tool. Universal passing rates should depend on the normalization or inter-comparisons of dosimetric tools if more than one dosimetric tool is used for patient specific QA.

11.
Med Phys ; 51(3): 1985-1996, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37722712

RESUMEN

BACKGROUND: In proton therapy, a highly steep distal dose penumbra can be utilized for dose conformity, given the Bragg peak characteristic of protons. However, the location of the Bragg peak in patients (i.e., the beam range) is very sensitive to range uncertainty. Even a small shift of beam range can produce a significant variation of delivered dose to tumor and normal tissues, thus degrading treatment quality and threatening patient safety. This range uncertainty issue, therefore, is one of the important aspects to be managed in proton therapy. PURPOSE: For better management of range uncertainty, range verification has been widely studied, and prompt gamma imaging (PGI) is considered one of the promising methods in that effort. In this context, a PGI system named the gamma electron vertex imaging (GEVI) system was developed and recently upgraded for application to pencil-beam scanning (PBS) proton therapy. Here, we report the first experimental results using the therapeutic spot scanning proton beams. METHODS: A homogeneous slab phantom and an anthropomorphic phantom were employed. Spherical and cubic planning target volumes (PTVs) were defined. Various range shift scenarios were introduced. Prompt gamma (PG) measurement was synchronized with beam irradiation. The measured PG distributions were aggregated to improve the PG statistics. The range shift was estimated based on the relative change of the centroid in the measured PG distribution. The estimated range shifts were analyzed by range shift mapping, confidence interval (CI) estimation, and statistical hypothesis testing. RESULTS: The range shift mapping results showed an obvious measured range shift tendency following the true shift values. However, some fluctuations were found for spots that had still-low PG statistics after spot aggregation. The 99% CI distributions showed clearly distributed range shift measurement data. The overall accuracy and precision for all investigated scenarios were 0.36 and 0.20 mm, respectively. The results of one-sample t-tests confirmed that every shift scenario could be observed up to 1 mm of shift. The ANOVA results proved that the measured range shift data could be discriminated from one another, except for 16 (of 138) comparison cases having 1-2 mm shift differences. CONCLUSIONS: This study demonstrated the feasibility of the GEVI system for measurement of range shift in spot scanning proton therapy. Our experimental results showed that the proton beam can be measured up to 1 mm of range shift with high accuracy and precision. We believe that the GEVI system is one of the most promising PGI systems for in vivo range verification. Further research for application to more various cases and patient treatments is planned.


Asunto(s)
Terapia de Protones , Humanos , Terapia de Protones/métodos , Electrones , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Diagnóstico por Imagen , Fantasmas de Imagen , Dosificación Radioterapéutica
12.
Med Phys ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828894

RESUMEN

BACKGROUND: Previous study proposed a method to measure linear energy transfer (LET) at specific points using the quenching magnitude of thin film solar cells. This study was conducted to propose a more advanced method for measuring the LET distribution. PURPOSE: This study focuses on evaluating the feasibility of estimating the proton LET distribution in proton therapy. The feasibility of measuring the proton LET and dose distribution simultaneously using a single-channel configuration comprising two solar cells with distinct quenching constants is investigated with the objective of paving the way for enhanced proton therapy dosimetry. METHODS: Two solar cells with different quenching constants were used to estimate the proton LET distribution. Detector characteristics (e.g., dose linearity and dose-rate dependency) of the solar cells were evaluated to assess their suitability for dosimetry applications. First, using a reference beam condition, the quenching constants of the two solar cells were determined according to the modified Birks equation. The signal ratios of the two solar cells were then evaluated according to proton LET in relation to the estimated quenching constants. The proton LET distributions of six test beams were obtained by measuring the signal ratios of the two solar cells at each depth, and the ratios were evaluated by comparing them with those calculated by Monte Carlo simulation. RESULTS: The detector characterization of the two solar cells including dose linearity and dose-rate dependence affirmed their suitability for use in dosimetry applications. The maximum difference between the LET measured using the two solar cells and that calculated by Monte Carlo simulation was 2.34 keV/µm. In the case of the dose distribution measured using the method proposed in this study, the maximum difference between range measured using the proposed method and that measured using a multilayered ionization chamber was 0.7 mm. The expected accuracy of simultaneous LET and dose distribution measurement using the method proposed in this study were estimated to be 3.82%. The signal ratios of the two solar cells, which are related to quenching constants, demonstrated the feasibility of measuring LET and dose distribution simultaneously. CONCLUSION: The feasibility of measuring proton LET and dose distribution simultaneously using two solar cells with different quenching constants was demonstrated. Although the method proposed in this study was evaluated using a single channel by varying the measuring depth, the results suggest that the proton LET and dose distribution can be simultaneously measured if the detector is configured in a multichannel form. We believe that the results presented in this study provide the envisioned transition to a multichannel configuration, with the promise of substantially advancing proton therapy's accuracy and efficacy in cancer treatment.

13.
Acta Oncol ; 52(3): 477-85, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23398594

RESUMEN

BACKGROUND: Hypofractionated radiotherapy potentially offers therapeutic gain for prostate cancer. We investigated the feasibility of hypofractionated proton therapy (PT). MATERIAL AND METHODS: Eighty-two patients with biopsy-proven T1-3N0M0 prostate adenocarcinoma and no history of androgen deprivation therapy were randomly assigned to five different dose schedules: Arm 1, 60 CGE (cobalt gray equivalent = proton dose in Gy × 1.1)/20 fractions/5 weeks; Arm 2, 54 CGE/15 fractions/5 weeks; Arm 3, 47 CGE/10 fractions/5 weeks; Arm 4, 35 CGE/5 fractions/2.5 weeks; or Arm 5, 35 CGE/5 fractions/5 weeks. RESULTS: The median follow-up duration was 42 months (11-52 months). The acute GI and GU grade ≥ 2 toxicity rates were 0 and 5%, respectively. The late GI and GU grade ≥ 2 toxicity rates were 16% and 7%, respectively. The best arm for acute GU toxicity was Arm 3, while that for late GI toxicity was Arm 2 in which none had grade ≥ 2 toxicity. The four-year American Society for Therapeutic Radiology and Oncology and Nadir + 2ng/ml BCF free survival (BCFFS) rates were 85% and 86%, respectively. CONCLUSIONS: Hypofractionated PT for patients with prostate adenocarcinoma as used in this study is feasible with an acceptable toxicity profile. As the BCFFS rates do not seem to be inferior to those produced using conventional fractionation, the application of hypofractionated PT may save patients time and money.


Asunto(s)
Adenocarcinoma/radioterapia , Fraccionamiento de la Dosis de Radiación , Neoplasias de la Próstata/radioterapia , Terapia de Protones/métodos , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Factibilidad , Tracto Gastrointestinal/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Terapia de Protones/efectos adversos , Traumatismos por Radiación/epidemiología , Planificación de la Radioterapia Asistida por Computador/métodos , Recto/patología , Tomografía Computarizada por Rayos X , Vejiga Urinaria/patología
14.
J Appl Clin Med Phys ; 14(2): 4055, 2013 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-23470935

RESUMEN

We evaluated the dosimetric effect of a respiration motion, and sought an effective planning strategy to compensate the motion using four-dimensional computed tomography (4D CT) dataset of seven selected liver patients. For each patient, we constructed four different proton plans based on: (1) average (AVG) CT, (2) maximum-intensity projection (MIP) CT, (3) AVG CT with density override of tumor volume (OVR), and (4) AVG CT with field-specific proton margin which was determined by the range difference between AVG and MIP plans (mAVG). The overall effectiveness of each planning strategy was evaluated by calculating the cumulative dose distribution over an entire breathing cycle. We observed clear differences between AVG and MIP CT-based plans, with significant underdosages at expiratory and inspiratory phases, respectively. Only the mAVG planning strategy was fully successful as the field-specific proton margin applied in the planning strategy complemented both the limitations of AVG and MIP CT-based strategies. These results demonstrated that respiration motion induced significant changes in dose distribution of 3D proton plans for mobile liver cancer and the changes can be effectively compensated by applying field-specific proton margin to each proton field.


Asunto(s)
Artefactos , Tomografía Computarizada Cuatridimensional/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Mecánica Respiratoria , Humanos , Movimiento (Física) , Terapia de Protones , Dosificación Radioterapéutica , Radioterapia Guiada por Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Med Phys ; 50(4): 2402-2416, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36583513

RESUMEN

PURPOSE: Various dosimeters have been proposed for skin dosimetry in electron radiotherapy. However, one main drawback of these skin dosimeters is their lack of flexibility, which could make accurate dose measurements challenging due to air gaps between a curved patient surface and dosimeter. Therefore, the purpose of this study is to suggest a novel flexible skin dosimeter based on a thin-film copper indium gallium selenide (CIGS) solar cell, and to evaluate its dosimetric characteristics. METHODS: The CIGS solar cell dosimeter consisted of (a) a customized thin-film CIGS solar cell and (b) a data acquisition (DAQ) system. The CIGS solar cell with a thickness of 0.33 mm was customized to a size of 10 × 10 mm2 . This customized solar cell plays a role in converting therapeutic electron radiation into electrical signals. The DAQ system was composed of a voltage amplifier with a gain of 1000, a voltage input module, a DAQ chassis, and an in-house software. This system converted the electrical analog signals (from solar cell) to digital signals with a sampling rate of ≤50 kHz and then quantified/visualized the digital signals in real time. We quantified the linearity/ sampling rate effect/dose rate dependence/energy dependence/field size output factor/reproducibility/curvature/bending recoverability/angular dependence of the CIGS solar cell dosimeter in therapeutic electron beams. To evaluate clinical feasibility, we measured the skin point doses by attaching the CIGS solar cell to an anthropomorphic phantom surface (for forehead, mouth, and thorax). The CIGS-measured doses were compared with calculated doses (by treatment planning system) and measured doses (by optically stimulated luminescent dosimeter). RESULTS: The normalized signals of the solar cell dosimeter increased linearly as the delivered dose increased. The gradient of the linearly fitted line was 1.00 with an R-square of 0.9999. The sampling rates (2, 10, and 50 kHz) of the solar cell dosimeter showed good performance even at low doses (<50 cGy). The solar cell dosimeter exhibited dose rate independence within 1% and energy independence within 3% error margins. The signals of the solar cell dosimeter were similar (<1%) when penetrating the same side of the CIGS cell regardless of the rotation angle of the solar cell. The field size output factor measured by the solar cell dosimeter was comparable to that measured by the ion chamber. The solar cell signals were similar between the baseline (week 1) and the last time point (week 4). Our detector showed curvature independence within 1.8% (curvatures of <0.10 mm- ) and bending recovery (curvature of 0.10 mm-1 ). The differences between measured doses (CIGS solar cell dosimeter vs. optically stimulated luminescent dosimeter) were 7.1%, 9.6%, and 1.0% for forehead, mouth, and thorax, respectively. CONCLUSION: We present the construction of a flexible skin dosimeter based on a CIGS solar cell. Our findings demonstrate that the CIGS solar cell has a potential to be a novel flexible skin dosimeter for electron radiotherapy. Moreover, this dosimeter is manufactured with low cost and can be easily customized to various size/shape, which represents advantages over other dosimeters.


Asunto(s)
Cobre , Dosímetros de Radiación , Humanos , Indio , Electrones , Reproducibilidad de los Resultados , Radiometría
16.
Cancers (Basel) ; 15(13)2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37444573

RESUMEN

(1) In this study, we developed a deep learning (DL) model that can be used to predict late bladder toxicity. (2) We collected data obtained from 281 uterine cervical cancer patients who underwent definitive radiation therapy. The DL model was trained using 16 features, including patient, tumor, treatment, and dose parameters, and its performance was compared with that of a multivariable logistic regression model using the following metrics: accuracy, prediction, recall, F1-score, and area under the receiver operating characteristic curve (AUROC). In addition, permutation feature importance was calculated to interpret the DL model for each feature, and the lightweight DL model was designed to focus on the top five important features. (3) The DL model outperformed the multivariable logistic regression model on our dataset. It achieved an F1-score of 0.76 and an AUROC of 0.81, while the corresponding values for the multivariable logistic regression were 0.14 and 0.43, respectively. The DL model identified the doses for the most exposed 2 cc volume of the bladder (BD2cc) as the most important feature, followed by BD5cc and the ICRU bladder point. In the case of the lightweight DL model, the F-score and AUROC were 0.90 and 0.91, respectively. (4) The DL models exhibited superior performance in predicting late bladder toxicity compared with the statistical method. Through the interpretation of the model, it further emphasized its potential for improving patient outcomes and minimizing treatment-related complications with a high level of reliability.

17.
Med Phys ; 50(2): 1194-1204, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36135795

RESUMEN

PURPOSE: The amount of luminescent light detected in a scintillator is reduced with increased proton linear energy transfer (LET) despite receiving the same proton dose, through a phenomenon called quenching. This study evaluated the ability of a solar cell coated with scintillating powder (SC-SP) to measure therapeutic proton LET by measuring the quenching effect of the scintillating powder using a solar cell while simultaneously measuring the dose of the proton beam. METHODS: SC-SP was composed of a flexible thin film solar cell and scintillating powder. The LET and dose of the pristine Bragg peak in the 14 cm range were calculated using a validated Monte Carlo model of a double scattering proton beam nozzle. The SC-SP was evaluated by measuring the proton beam under the same conditions at specific depths using SC-SP and Markus chamber. Finally, the 10 and 20 cm range pristine Bragg peaks and 5 cm spread-out Bragg peak (SOBP) in the 14 cm range were measured using the SC-SP and the Markus chamber. LETs measured using the SC-SP were compared with those calculated using Monte Carlo simulations. RESULTS: The quenching factors of the SC-SP and solar cell alone, which were slopes of linear fit obtained from quenching correction factors according to LET, were 0.027 and 0.070 µm/keV (R2 : 0.974 and 0.975). For pristine Bragg peaks in the 10 and 20 cm ranges, the maximum differences between LETs measured using the SC-SP and calculated using Monte Carlo simulations were 0.5 keV/µm (15.7%) and 1.2 keV/µm (12.0%), respectively. For a 5 cm SOBP proton beam, the LET measured using the SC-SP and calculated using Monte Carlo simulations differed by up to 1.9 keV/µm (18.7%). CONCLUSIONS: Comparisons of LETs for pristine Bragg peaks and SOBP between measured using the SC-SP and calculated using Monte Carlo simulations indicated that the solar cell-based system could simultaneously measure both LET and dose in real-time and is cost-effective.


Asunto(s)
Terapia de Protones , Protones , Polvos , Transferencia Lineal de Energía , Método de Montecarlo
18.
Med Phys ; 50(1): 557-569, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35993665

RESUMEN

PURPOSE: A real-time solar cell based in vivo dosimetry system (SC-IVD) was developed using a flexible thin film solar cell and scintillating powder. The present study evaluated the clinical feasibility of the SC-IVD in electron beam therapy. METHODS: A thin film solar cell was coated with 100 mg of scintillating powder using an optical adhesive to enhance the sensitivity of the SC-IVD. Calibration factors were obtained by dividing the dose, measured at a reference depth for 6-20 MeV electron beam energy, by the signal obtained using the SC-IVD. Dosimetric characteristics of SC-IVDs containing variable quantities of scintillating powder (0-500 mg) were evaluated, including energy, dose rate, and beam angle dependencies, as well as dose linearity. To determine the extent to which the SC-IVD affected the dose to the medium, doses at R90 were compared depending on whether the SC-IVD was on the surface. Finally, the accuracy of surface doses measured using the SC-IVD was evaluated by comparison with surface doses measured using a Markus chamber. RESULTS: Charge measured using the SC-IVD increased linearly with dose and was within 1% of the average signal according to the dose rate. The signal generated by the SC-IVD increased as the beam angle increased. The presence of the SC-IVD on the surface of a phantom resulted in a 0.5%-2.2% reduction in dose at R90 for 6-20 MeV electron beams compared with the bare phantom. Surface doses measured using the SC-IVD system and Markus chamber differed by less than 5%. CONCLUSIONS: The dosimetric characteristics of the SC-IVD were evaluated in this study. The results showed that it accurately measured the surface dose without a significant difference of dose in the medium when compared with the Markus chamber. The flexibility of the SC-IVD allows it to be attached to a patient's skin, enabling real-time and cost-effective measurement.


Asunto(s)
Electrones , Dosimetría in Vivo , Humanos , Polvos , Radiometría/métodos , Dosimetría por Película/métodos
19.
Med Phys ; 39(4): 2100-7, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22482631

RESUMEN

PURPOSE: In vivo range verification is one of the most important parts of proton therapy to fully utilize its benefits delivering high radiation dose to tumor, while sparing the normal tissue with the so-called Bragg peak. Currently, however, range verification method is not used in clinics. The purpose of the present study is to optimize and evaluate the configuration of an array-type prompt gamma measurement system on determining distal dose edge for in vivo range verification of proton therapy. METHODS: To effectively measure the prompt gammas against the background gammas, the Monte Carlo simulations with the MCNPX code were employed in optimizing the configuration of the measurement system, and the Monte Carlo method was also used to understand the effect of the background gammas, mainly neutron capture gammas, in the measured gamma distribution. To reduce the effect of the background gammas, the optimized energy window of 4-10 MeV in measuring the prompt gammas was employed. A parameterized source was used to maximize computation speed in the optimization study. A simplified test measurement system, using only one detector moving from one measurement location to the next, was constructed and applied to therapeutic proton beams of 80-220 MeV. For accurate determination of the distal dose edge, the sigmoidal curve-fitting method was applied to the measured distributions of the prompt gammas, and then, the location of the half-value between the maximum and minimum value in the curve-fitting was determined as the distal dose edge and compared with the beam range assessed by the proton dose distribution. RESULTS: The parameterized source term employed in optimization process improved the calculation speed by up to ∼300 times. The optimization study indicates that an array-type measurement system with 3, 2, 2, and 150 mm for scintillator thickness, slit width, septal thickness, and slit length, respectively, can effectively measure the prompt gamma distributions minimizing the contribution of background gammas. The present results show that a few hundred counts of prompt gammas can be easily obtained by measuring 10 s at each measurement location for proton beams of ∼4 nA. The distal dose edges determined by the prompt gamma distribution are 5.45, 14.73, and 27.74 cm for proton beams of 5.17 (80 MeV), 14.99 (150 MeV), and 27.38 (220 MeV) cm, respectively. CONCLUSIONS: The results show that the array-type measurement system can measure prompt gamma distributions from a therapeutic proton beam within a short measurement time, and that the distal dose edge can be determined within a few millimeters of error without using any sophisticated analysis.


Asunto(s)
Análisis de Falla de Equipo/instrumentación , Radiometría/instrumentación , Radioterapia de Alta Energía/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Rayos gamma , Terapia de Protones , Dosis de Radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Med Phys ; 39(7): 4265-73, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22830760

RESUMEN

PURPOSE: A new motion-based gated proton therapy for the treatment of orbital tumors using real-time eye-tracking system was designed and evaluated. METHODS: We developed our system by image-pattern matching, using a normalized cross-correlation technique with LabVIEW 8.6 and Vision Assistant 8.6 (National Instruments, Austin, TX). To measure the pixel spacing of an image consistently, four different calibration modes such as the point-detection, the edge-detection, the line-measurement, and the manual measurement mode were suggested and used. After these methods were applied to proton therapy, gating was performed, and radiation dose distributions were evaluated. RESULTS: Moving phantom verification measurements resulted in errors of less than 0.1 mm for given ranges of translation. Dosimetric evaluation of the beam-gating system versus nongated treatment delivery with a moving phantom shows that while there was only 0.83 mm growth in lateral penumbra for gated radiotherapy, there was 4.95 mm growth in lateral penumbra in case of nongated exposure. The analysis from clinical results suggests that the average of eye movements depends distinctively on each patient by showing 0.44 mm, 0.45 mm, and 0.86 mm for three patients, respectively. CONCLUSIONS: The developed automatic eye-tracking based beam-gating system enabled us to perform high-precision proton radiotherapy of orbital tumors.


Asunto(s)
Artefactos , Movimientos Oculares , Neoplasias del Ojo/patología , Neoplasias del Ojo/radioterapia , Aumento de la Imagen/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Radioterapia Guiada por Imagen/métodos , Algoritmos , Humanos , Movimiento (Física) , Terapia de Protones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA