Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(38): E3587-94, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24003117

RESUMEN

Type IA DNA topoisomerases work with a unique mechanism of strand passage through an enzyme-bridged, ssDNA gate, thus enabling them to carry out diverse reactions in processing structures important for replication, recombination, and repair. Here we report a unique reaction mediated by an archaeal type IA topoisomerase, the synthesis and dissolution of hemicatenanes. We cloned, purified, and characterized an unusual type IA enzyme from a hyperthermophilic archaeum, Nanoarchaeum equitans, which is split into two pieces. The recombinant heterodimeric enzyme has the expected activities in its preference of relaxing negatively supercoiled DNA. Its amino acid sequence and cleavage site sequence analysis suggest that it is topoisomerase III, and therefore we named it "NeqTop3." At high enzyme concentrations, NeqTop3 can generate high-molecular-weight DNA networks. Biochemical and electron microscopic data indicate that the DNA networks are connected through hemicatenane linkages. The hemicatenane formation likely is mediated by the single-strand passage through denatured bubbles in the substrate DNA under high temperature. NeqTop3 at lower concentrations can reverse hemicatenanes. A complex of human topoisomerase 3α, Bloom helicase, and RecQ-mediated genome instability protein 1 and 2 can partially disentangle the hemicatenane network. Both the formation and dissolution of hemicatenanes by type IA topoisomerases demonstrate that these enzymes have an important role in regulating intermediates from replication, recombination, and repair.


Asunto(s)
Proteínas Portadoras/metabolismo , Catenanos/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Nanoarchaeota/enzimología , Proteínas Nucleares/metabolismo , RecQ Helicasas/metabolismo , Secuencia de Bases , Proteínas Portadoras/genética , Clonación Molecular , ADN-Topoisomerasas de Tipo I/genética , Proteínas de Unión al ADN/genética , Humanos , Microscopía Electrónica , Datos de Secuencia Molecular , Proteínas Nucleares/genética , RecQ Helicasas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
2.
Res Sq ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37886519

RESUMEN

Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we applied a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis showed that DDA1 is an integral component of the CRL4CSA complex. Functional analysis revealed that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.

3.
Methods Mol Biol ; 1703: 153-159, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177740

RESUMEN

Hemicatenane is a structure that forms when two DNA duplexes are physically linked through a single-stranded crossover. It is proposed to be an intermediate resulting from double Holliday junction (dHJ) dissolution, repair of replication stalled forks and late stage replication. Our previous study has shown that hemicatenane can be synthesized and dissolved in vitro by hyperthermophilic type IA topoisomerases. Here we present the protocol of hemicatenane synthesis and its structure detection by 2D agarose gel electrophoresis. The generated product can be used as a substrate to study the biochemical mechanism of hemicatenane processing reactions.


Asunto(s)
Catenanos/síntesis química , ADN-Topoisomerasas de Tipo I/metabolismo , Nanoarchaeota/enzimología , Proteínas Arqueales/metabolismo , Catenanos/metabolismo , Replicación del ADN , Electroforesis en Gel Bidimensional , Conformación de Ácido Nucleico
4.
Elife ; 42015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26682650

RESUMEN

Holliday junctions (HJs) are key DNA intermediates in homologous recombination. They link homologous DNA strands and have to be faithfully removed for proper DNA segregation and genome integrity. Here, we present the crystal structure of human HJ resolvase GEN1 complexed with DNA at 3.0 Å resolution. The GEN1 core is similar to other Rad2/XPG nucleases. However, unlike other members of the superfamily, GEN1 contains a chromodomain as an additional DNA interaction site. Chromodomains are known for their chromatin-targeting function in chromatin remodelers and histone(de)acetylases but they have not previously been found in nucleases. The GEN1 chromodomain directly contacts DNA and its truncation severely hampers GEN1's catalytic activity. Structure-guided mutations in vitro and in vivo in yeast validated our mechanistic findings. Our study provides the missing structure in the Rad2/XPG family and insights how a well-conserved nuclease core acquires versatility in recognizing diverse substrates for DNA repair and maintenance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA