Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Toxicol ; 39(6): 3356-3366, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38444163

RESUMEN

Melanoma is the most lethal skin malignancy. Fucoxanthin is a marine carotenoid with significant anticancer activities. Intriguingly, Fucoxanthin's impact on human melanoma remains elusive. Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising target in cancer therapy due to its persistent activation in various cancers, including melanoma. Herein, we revealed that Fucoxanthin is cytotoxic to human melanoma cell lines A2758 and A375 while showing limited cytotoxicity to normal human melanocytes. Apoptosis is a primary reason for Fucoxanthin's melanoma cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk drastically abrogated Fucoxanthin-elicited clonogenicity blockage. Besides, Fucoxanthin downregulated tyrosine 705-phosphorylated STAT3 (p-STAT3 (Y705)), either inherently present in melanoma cells or inducible by interleukin 6 (IL-6) stimulation. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, abolished Fucoxanthin-elicited melanoma cell apoptosis and clonogenicity inhibition, supporting the pivotal role of STAT3 blockage in Fucoxanthin's melanoma cytotoxicity. Moreover, Fucoxanthin lowered BCL-xL levels by blocking STAT3 activation, while ectopic BCL-xL expression rescued melanoma cells from Fucoxanthin-induced killing. Lastly, Fucoxanthin was found to diminish the levels of JAK2 with dual phosphorylation at tyrosine residues 1007 and 1008 in melanoma cells, suggesting that Fucoxanthin impairs STAT3 signaling by blocking JAK2 activation. Collectively, we present the first evidence that Fucoxanthin is cytotoxic selectively against human melanoma cells while sparing normal melanocytes. Mechanistically, Fucoxanthin targets the JAK2/STAT3/BCL-xL antiapoptotic axis to provoke melanoma cell death. This discovery implicates the potential application of Fucoxanthin as a chemopreventive or therapeutic strategy for melanoma management.


Asunto(s)
Antineoplásicos , Apoptosis , Melanoma , Transducción de Señal , Xantófilas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Proteína bcl-X/metabolismo , Línea Celular Tumoral , Janus Quinasa 2/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Xantófilas/farmacología
2.
Plant Cell Physiol ; 60(10): 2167-2179, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31198969

RESUMEN

Monodehydroascorbate reductase (MDAR; EC 1.6.5.4) is one of the key enzymes in the conversion of oxidized ascorbate (AsA) back to reduced AsA in plants. This study investigated the role of MDAR in the tolerance of Chlamydomonas reinhardtii P.A. Dangeard to photooxidative stress by overexpression and downregulation of the CrMDAR1 gene. For overexpression of CrMDAR1 driven by a HSP70A:RBCS2 fusion promoter, the cells survived under very high-intensity light stress (VHL, 1,800 µmol�m-2�s-1), while the survival of CC-400 and vector only control (vector without insert) cells decreased for 1.5 h under VHL stress. VHL increased lipid peroxidation of CC-400 but did not alter lipid peroxidation in CrMDAR1 overexpression lines. Additionally, overexpression of CrMDAR1 showed an increase in viability, CrMDAR1 transcript abundance, enzyme activity and the AsA: dehydroascorbate (DHA) ratio. Next, MDAR was downregulated to examine the essential role of MDAR under high light condition (HL, 1,400 µmol�m-2�s-1). The CrMDAR1 knockdown amiRNA line exhibited a low MDAR transcript abundance and enzyme activity and the survival decreased under HL conditions. Additionally, HL illumination decreased CrMDAR1 transcript abundance, enzyme activity and AsA:DHA ratio of CrMDAR1-downregulation amiRNA lines. Methyl viologen (an O2�- generator), H2O2 and NaCl treatment could induce an increase in CrMDAR1 transcript level. It represents reactive oxygen species are one of the factor inducing CrMDAR1 gene expression. In conclusion, MDAR plays a role in the tolerance of Chlamydomonas cells to photooxidative stress.


Asunto(s)
Ácido Ascórbico/metabolismo , Chlamydomonas reinhardtii/enzimología , NADH NADPH Oxidorreductasas/metabolismo , Estrés Fisiológico , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/efectos de la radiación , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/farmacología , Luz , Peroxidación de Lípido , NADH NADPH Oxidorreductasas/genética , Estrés Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Cloruro de Sodio/farmacología
3.
Physiol Plant ; 162(1): 35-48, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28950038

RESUMEN

The role of glutathione reductase (GR; EC 1.6.4.2) in the tolerance of Chlamydomonas reinhardtii P.A. Dangeard to high-intensity light stress (HL, 1400 µmol m-2 s-1 ) was examined. Cells survived under high light (HL) stress, although their growth was inhibited after long-term treatment (9-24 h). GR activity increased 1 h after HL treatment. The contents of total glutathione, reduced glutathione (GSH) and glutathione disulfide (GSSG) increased 1-3 h after HL treatment and then decreased after 24 h, while the GSH:GSSG ratio (glutathione redox potential) decreased after 3-9 h and recovered after 24 h. The transcript abundance of GR, CrGR1 (Cre06.g262100) and CrGR2 (Cre09.g396252) as well as glutathione synthesis-related genes, CrGSH1 (Cre02g077100.t1.1) and CrGSH2 (Cre17.g70800.t1.1), increased with a peak near 1 h after HL treatment. Except for enhanced glutathione synthesis, the GR-mediated glutathione redox machinery is also critical for the tolerance of C. reinhardtii cells to HL stress. Therefore, GR was downregulated or upregulated to investigate the importance of GR in HL tolerance. The CrGR1 knockdown amiRNA line exhibited low GR transcript abundance, GR activity and GSH:GSSG ratio and could not survive under HL conditions. Over-expression of CrGR1 or CrGR2 driven by a HSP70A:RBCS2 fusion promoter resulted in a higher GR transcript abundance, GR activity and GSH:GSSG ratio and led to cell survival when exposed to high-intensity illumination, i.e. 1800 µmol m-2 s-1 . In conclusion, GR-mediated modulation of the glutathione redox potential plays a role in the tolerance of Chlamydomonas cells to photo-oxidative stress.


Asunto(s)
Adaptación Fisiológica/efectos de la radiación , Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/efectos de la radiación , Glutatión Reductasa/metabolismo , Glutatión/metabolismo , Luz , Estrés Oxidativo/efectos de la radiación , Proliferación Celular/efectos de la radiación , Chlamydomonas reinhardtii/enzimología , Regulación hacia Abajo/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/efectos de la radiación , Transformación Genética
4.
Plant Cell Physiol ; 57(10): 2104-2121, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27440549

RESUMEN

The role of ascorbate (AsA) recycling via dehydroascorbate reductase (DHAR) in the tolerance of Chlamydomonas reinhardtii to photo-oxidative stress was examined. The activity of DHAR and the abundance of the CrDHAR1 (Cre10.g456750) transcript increased after moderate light (ML; 750 µmol m-2 s-1) or high light (HL; 1,800 µmol m-2 s-1) illumination, accompanied by dehydroascorbate (DHA) accumulation, decreased AsA redox state, photo-inhibition, lipid peroxidation, H2O2 overaccumulation, growth inhibition and cell death. It suggests that DHAR and AsA recycling is limiting under high-intensity light stress. The CrDHAR1 gene was cloned and its recombinant CrDHAR1 protein was a monomer (25 kDa) detected by Western blot that exhibits an enzymatic activity of 965 µmol min-1 mg-1 protein. CrDHAR1 was overexpressed driven by a HSP70A:RBCS2 fusion promoter or down-regulated by artificial microRNA (amiRNA) to examine whether DHAR-mediated AsA recycling is critical for the tolerance of C. reinahartii cells to photo-oxidative stress. The overexpression of CrDHAR1 increased DHAR protein abundance and enzyme activity, AsA pool size, AsA:DHA ratio and the tolerance to ML-, HL-, methyl viologen- or H2O2-induced oxidative stress. The CrDHAR1-knockdown amiRNA lines that have lower DHAR expression and AsA recycling ability were sensitive to high-intensity illumination and oxidative stress. The glutathione pool size, glutathione:oxidized glutathione ratio and glutathione reductase and ascorbate peroxidase activities were increased in CrDHAR1-overexpressing cells and showed a further increase after high-intensity illumination but decreased in wild-type cells after light stress. The present results suggest that increasing AsA regeneration via enhanced DHAR activity modulates the ascorbate-glutathione cycle activity in C. reinhardtii against photo-oxidative stress.


Asunto(s)
Adaptación Fisiológica/efectos de la radiación , Ácido Ascórbico/metabolismo , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/efectos de la radiación , Luz , Estrés Oxidativo/efectos de la radiación , Oxidorreductasas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Secuencia de Bases , Clorofila/metabolismo , Clorofila A , Regulación hacia Abajo/genética , Fluorescencia , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Glutatión/metabolismo , Peróxido de Hidrógeno/toxicidad , Paraquat/toxicidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transformación Genética/efectos de los fármacos , Transformación Genética/efectos de la radiación
5.
J Insect Sci ; 162016.
Artículo en Inglés | MEDLINE | ID: mdl-26798137

RESUMEN

The methanol and ethyl acetate (EA) extracts of four species of sea lily (Himerometra magnipinna, Comaster multifidus, Comanthina sp., and Comatella maculata) were evaluated for their insecticidal activity against Yellow-fever mosquito larvae (Aedes aegypti) and their repellency against adult Asian Tiger mosquitoes (Aedes albopictus). The 24-hr minimum inhibition concentration (MIC) data revealed that the extracts from H. magnipinna and the C. maculata were the most active, killing mosquito larvae at 12.5 ppm. The toxicity of the extracts from these four sea lilies in descending order was H. magnipinna (12.5 ppm), C. maculata (12.5 ppm), C. multifidus (100 ppm), and Comanthina sp. (200 ppm). Furthermore, no significant difference in toxicity was found using either EA or methanol as the extraction solvent. The MIC at 12.5 ppm is promising as an insecticide lead. The repellency study results show that EA is a better solvent for one species (H. magnipinna), but the methanol is a better solvent overall. The repellency of these sea lily extracts in descending order was Comanthina sp. MeOH (ED50 at 0.32%), followed by H. magnipinna EA (ED50 at 0.38%), C. multifidus MeOH (ED50 at 0.57%), C. maculata MeOH (ED50 at 0.76%), C. multifidus EA (ED50 at 1.25%), and H. magnipinna MeOH (ED50 at 1.67%). A compound with ED50 <0.5% is considered to be a promising repellant. Among the studied sea lilies, both Comanthina sp. and H. magnipinna have potential to be further developed as mosquito control agents due to their favorable toxicity and repellency.


Asunto(s)
Aedes , Equinodermos/química , Repelentes de Insectos , Insecticidas , Extractos Vegetales , Animales , Pruebas de Sensibilidad Microbiana , Taiwán , Extractos de Tejidos
6.
Physiol Plant ; 150(4): 550-64, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24102363

RESUMEN

Illumination of Chlamydomonas reinhardtii cells at 1000 (high light, HL) or 3000 (very high light, VHL) µmol photons m(-2) s(-1) intensity increased superoxide anion radical (O(2)(•-)) and hydrogen peroxide (H(2)O(2)) production, and VHL illumination also increased the singlet oxygen ((1)O(2)) level. HL and VHL illumination decreased methionine sulfoxide reductase A4 (CrMSRA4) transcript levels but increased CrMSRA3, CrMSRA5 and CrMSRB2.1 transcripts levels. CrMSRB2.2 transcript levels increased only under VHL conditions. The role of reactive oxygen species (ROS) on CrMSR expression was studied using ROS scavengers and generators. Treatment with dimethylthiourea (DMTU), a H(2)O(2) scavenger, suppressed HL- and VHL-induced CrMSRA3, CrMSRA5 and CrMSRB2.1 expression, whereas H(2)O(2) treatment stimulated the expression of these genes under 50 µmol photons m(-2) s(-1) conditions (low light, LL). Treatment with diphenylamine (DPA), a (1)O(2) quencher, reduced VHL-induced CrMSRA3, CrMSRA5 and CrMSRB2.2 expression and deuterium oxide, which delays (1)O(2) decay, enhanced these gene expression, whereas treatment with (1)O(2) (rose bengal, methylene blue and neutral red) or O(2)(•-) (menadione and methyl viologen) generators under LL conditions induced their expression. DPA treatment inhibited the VHL-induced decrease in CrMSRA4 expression, but other ROS scavengers and ROS generators did not affect its expression under LL or HL conditions. These results demonstrate that the differential expression of CrMSRs under HL illumination can be attributed to different types of ROS. H(2)O(2), O(2) (•-) and (1)O(2) modulate CrMSRA3 and CrMSRA5 expression, whereas H(2)O(2) and O(2)(•-) regulate CrMSRB2.1 and CrMSRB2.2 expression, respectively. (1)O(2) mediates the decrease of CrMSRA4 expression by VHL illumination, but ROS do not modulate its decrease under HL conditions.


Asunto(s)
Chlamydomonas reinhardtii/genética , Luz , Metionina Sulfóxido Reductasas/genética , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma/efectos de la radiación , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/metabolismo , Relación Dosis-Respuesta en la Radiación , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Isoenzimas/genética , Oxidantes/metabolismo , Oxidantes/farmacología , Superóxidos/metabolismo
7.
Plant Physiol Biochem ; 207: 108326, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237421

RESUMEN

Understanding how to adapt outdoor cultures of Nannochloropsis oceanica to high light (HL) is vital for boosting productivity. The N. oceanica RB2 mutant, obtained via ethyl methanesulfonate mutagenesis, was chosen for its tolerance to Rose Bengal (RB), a singlet oxygen (1O2) generator. Compared to the wild type (WT), the RB2 mutant showed higher resilience to excess light conditions. Analyzing the ascorbate-glutathione cycle (AGC), involving ascorbate peroxidases (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.8.1.7), in the RB2 mutant under HL stress provided valuable insights. At 250 µmol photon m-2 s-1 (HL), the WT strain displayed superoxide anion radicals (O2▪-) and hydrogen peroxide (H2O2) accumulation, increased lipid peroxidation, and cell death compared to normal light (NL) conditions (50 µmol photon m-2 s-1). The RB2 mutant didn't accumulate O2▪- and H2O2 after HL exposure, and exhibited increased APX, DHAR, and GR activities and transcript levels compared to WT and remained consistent after HL treatment. Although the RB2 mutant had a smaller ascorbate (AsA) pool than the WT, its ability to regenerate dehydroascorbate (DHA) increased post HL exposure, indicated by a higher AsA/DHA ratio. Additionally, under HL conditions, the RB2 mutant displayed an improved glutathione (GSH) regeneration rate (GSH/GSSG ratio) without changing the GSH pool size. Remarkably, H2O2 or menadione (a O2▪- donor) treatment induced cell death in the WT strain but not in the RB2 mutant. These findings emphasize the essential role of AGC in the RB2 mutant of Nannochloropsis in handling photo-oxidative stress.


Asunto(s)
Peróxido de Hidrógeno , Rosa Bengala , Peróxido de Hidrógeno/metabolismo , Ácido Ascórbico/metabolismo , Antioxidantes/metabolismo , Glutatión Reductasa/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Aclimatación , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo
8.
Plant Cell Physiol ; 54(8): 1296-315, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23713096

RESUMEN

Nitric oxide (NO) was produced in Chlamydomonas reinhardtii cells 30 min after illumination at a very high light intensity of 3,000 µmol m⁻² s⁻¹ (VHL) followed by singlet oxygen (¹O2) production, lipid peroxidation, expression of oxidative stress-related genes, irreversible PSII inactivation and cell death. Treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), an NO scavenger, effectively reduced ¹O2 levels and VHL damage, while treatment with diphenylamine (DPA), an ¹O2 scavenger, only slightly reduced NO levels, though VHL damage was still effectively reduced. In the presence of cPTIO, the decline in minimum (Fo, Ft) and maximum (Fm, Fm') fluorescence after 60 min of VHL illumination can be slowed, and after recovery to 50 µmol m⁻² s⁻¹ conditions, PSII activity (Fv/Fm, Fv'/Fm') and PSII donor-side and acceptor-side electron transfer were partially restored. This finding indicates that ¹O2 production is induced by NO through inhibition of PSII electron transfer under VHL conditions. VHL illumination caused a decrease in carotenoid contents but a transient increase in the transcription of two enzymes involved in carotenoid synthesis, phytoene synthase (PSY) and phytoene desaturase (PDS), at 30 min followed by a decrease at 60 min. The VHL-induced decrease in PDS transcription can be inhibited in the presence of cPTIO. The results of the present study show that NO generated in C. reinhardtii cells under VHL conditions induces ¹O2 accumulation due to a decrease in the ¹O2-scavenging capacity caused by NO-mediated inhibition of carotenoid synthesis and PSII electron transport, which, in turn, leads to oxidative damage and cell death.


Asunto(s)
Carotenoides/metabolismo , Chlamydomonas reinhardtii/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Óxido Nítrico/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Oxígeno Singlete/metabolismo , Proteínas Algáceas/genética , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efectos de la radiación , Clorofila/metabolismo , Clorofila A , Regulación hacia Abajo , Luz , Peroxidación de Lípido , Estrés Oxidativo
9.
Bioresour Technol ; 368: 128350, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36414139

RESUMEN

Carbon dioxide is the major greenhouse gas and regards as the critical issue of global warming and climate changes. The inconspicuous microalgae are responsible for 40% of carbon fixation among all photosynthetic plants along with a higher photosynthetic efficiency and convert the carbon into lipids, protein, pigments, and bioactive compounds. Genetic approach and metabolic engineering are applied to accelerate the growth rate and biomass of microalgae, hence achieve the mission of carbon neutrality. Meanwhile, CRISPR/Cas9 is efficiently to enhance the productivity of high-value compounds in microalgae for it is easier operation, more affordable and is able to regulate multiple genes simultaneously. The genetic engineering strategies provide the multidisciplinary concept to evolute and increase the CO2 fixation rate through Calvin-Benson-Bassham cycle. Therefore, the technologies, bioinformatics tools, systematic engineering approaches for carbon neutrality and circular economy are summarized and leading one step closer to the decarbonization society in this review.


Asunto(s)
Microalgas , Microalgas/genética , Tecnología , Biomasa , Fotosíntesis , Ingeniería Metabólica
10.
Sci Total Environ ; 855: 158850, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36411602

RESUMEN

Rapid growth in the aquaculture industry and corresponding increases in nutrient and organic carbon levels in coastal regions can lead to eutrophication and increased greenhouse gas emissions. Macroalgae are the organisms primarily responsible for the capture of CO2 and removal of nutrients from coastal waters. In the current study, we developed a novel wastewater treatment system in which the red macroalga, Sarcordia suae, is used to capture CO2 under thermostatic conditions in subtropical regions. In 2020 (without temperature control), the carbon capture rate (CCR) of Sarcordia suae varied considerably with the season: winter/spring (2.1-3.9 g-C m-2 d-1) and summer (0.09 g-C m-2 d-1). In 2021, solar powered cooling reduced summer seawater temperatures from 31 to 33 °C to 23-25 °C with a corresponding increase in the mean CCR: winter/spring (2-7 g-C m-2 d-1) and summer (1.33 g-C m-2 d-1). The proposed aquaculture wastewater system proved highly efficient in removing nitrogen (20.7 mg-N g-1 DW d-1, DW = dry weight) and phosphorus (4.4 mg-P g-1 DW d-1). Furthermore, the high density of Sarcodia (1.10 ± 0.03 g cm-3) would permit the harvesting and subsequent dumping of Sarcodia in deep off-shore waters. This study demonstrated a low-cost land-based seaweed cultivation system for capturing CO2 and excess nutrients from aquaculture wastewater year-round under temperature controlled environments in subtropical regions.


Asunto(s)
Algas Marinas , Energía Solar , Aguas Residuales , Carbono , Dióxido de Carbono , Acuicultura
11.
Plant Cell Physiol ; 53(2): 445-56, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22210901

RESUMEN

Nitric oxide (NO) has emerged as a fundamental signal molecule involved in the responses of plant to stress. A role for NO in the regulation of methionine sulfoxide reductase (MSR) mRNA expression and high light acclimation was studied in a green macroalga Ulva fasciata Delile. Transfer from darkness to high light (≥1,200 µmol photons m(-2) s(-1)) inhibited photosynthesis and growth but increased NO production and UfMSRA and UfMSRB transcripts. Treatment with an NO scavenger, 2-(4-carboxy- phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO), at 1,200 µmol photons m(-2) s(-1) caused a further growth inhibition accompanied by an inhibition of the increase of UfMSRA and UfMSRB transcripts by high light, while treatment with an NO generator, sodium nitroprusside (SNP), alleviated the growth inhibition and enhanced UfMSRA and UfMSRB expression. Exposure to moderate light (300 µmol photons m(-2) s(-1)) conditions also increased UfMSRA and UfMSRB transcripts, which were not affected by cPTIO treatment but were enhanced by SNP treatment. So, NO does not mediate the up-regulation of UfMSR genes by transfer to moderate light possibly as a precautionary mechanism in the sense of increasing light intensities in the daytime. In conclusion, NO production can be induced in U. fasciata upon exposure to high light for up-regulation of UfMSRA and UfMSRB expression but the level of NO production is not sufficient for acquisition of full tolerance to high light stress. Enhanced NO production by an exogenously applied NO generator can effectively trigger the high light acclimation process, including UfMSRA and UfMSRB expression.


Asunto(s)
Aclimatación , Luz , Metionina Sulfóxido Reductasas/metabolismo , Óxido Nítrico/metabolismo , Ulva/genética , Ulva/efectos de la radiación , Óxidos N-Cíclicos/farmacología , Regulación de la Expresión Génica de las Plantas , Imidazoles/farmacología , Metionina Sulfóxido Reductasas/genética , Nitroprusiato/farmacología , Fotosíntesis/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ulva/enzimología , Regulación hacia Arriba
12.
Physiol Plant ; 144(3): 225-37, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22122736

RESUMEN

A gene (UfCBR) encoding carotene biosynthesis-related (CBR) protein that potentially functions for the dissipation of excessive energy has been cloned from the intertidal green macroalga Ulva fasciata Delile. Hypersalinity and high light ≥300 µmol m(-2) s(-1) increased both UfCBR mRNA level and non-photochemical quenching (NPQ). The increase of UfCBR mRNA level and NPQ by high light was inhibited by treatment of photosynthetic electron transport inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, but not by stigmatellin, an inhibitor that blocks electron transfer from quinol oxidase to iron-sulfur protein in cytochrome b(6) f complex. Treatment of dimethylthiourea, an H(2) O(2) scavenger, under 1200 µmol m(-2) s(-1) condition inhibited H(2) O(2) accumulation but did not affect UfCBR mRNA level, while treatment of H(2) O(2) in 150 µmol m(-2) s(-1) condition decreased UfCBR mRNA level. Thus, an reactive oxygen species-independent redox control via a more reduced state downstream the cytochrome b(6) f complex is involved in high light up-regulation of UfCBR expression in U. fasciata. The expression of UfCBR in U. fasciata against oxidative stress occurring in high light or high salinity in relation to NPQ is discussed.


Asunto(s)
Carotenoides/biosíntesis , Luz , Salinidad , Ulva/metabolismo , Aclimatación , Carotenoides/genética , Complejo de Citocromo b6f/genética , Complejo de Citocromo b6f/metabolismo , Dibromotimoquinona/farmacología , Diurona/farmacología , Transporte de Electrón , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Oxígeno/metabolismo , Procesos Fotoquímicos , Fotosíntesis , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polienos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Sodio/farmacología , Tiourea/análogos & derivados , Tiourea/farmacología , Ulva/genética , Ulva/efectos de la radiación
13.
Biotechnol J ; 17(8): e2100603, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35467782

RESUMEN

Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value-added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome-editing tools in microalgae biorefinery and wastewater treatment (WWT). The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of WWT and biorefinery feedstock production are discussed.


Asunto(s)
Microalgas , Purificación del Agua , Biocombustibles , Biomasa , Edición Génica , Ingeniería Genética
14.
J Phycol ; 47(3): 538-547, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27021983

RESUMEN

Transcripts and enzyme activities of antioxidative enzymes were increased by hypersalinity (90‰) in a marine macroalga, Ulva fasciata Delile (Lu et al. 2006, Sung et al. 2009). This study examined the effects of polyamines (PAs) on the induction of hypersalinity tolerance through the modulation of expression of antioxidative defense enzymes. Incubation of U. fasciata grown under 30‰ in the presence of putrescine (Put), spermidine (Spd), or spermine (Spm) (1 mM) for 12 h increased internal PA contents prior to 90‰ treatment. Spd or Spm pretreatments reduced H2 O2 accumulation and lipid peroxidation during 90‰ treatment and improved the recovery growth rate after transfer from 90‰ to 30‰. Increases in iron superoxide dismutase (FeSOD; EC 1.15.1.1) activity and transcript levels observed under 90‰ were further increased by Spd and Spm pretreatments, while Put pretreatment had no effect. Increases in MnSOD activity and transcript levels observed under 90‰ were enhanced by Spd and Put pretreatment. An observed increase in catalase (CAT; EC 1.11.1.6) activity and transcript levels under 90‰ was not affected by Spd and Spm pretreatments but was inhibited by Put pretreatment. Observed increases in ascorbate peroxidase (APX; EC 1.11.1.11) activity and transcript levels under 90‰ were inhibited by Put, Spd, and Spm pretreatments. In conclusion, Spd and Spm treatment affords U. fasciata protection against hypersalinity through the up-regulation of FeSOD gene expression, thereby alleviating oxidative damage.

15.
Front Plant Sci ; 12: 690763, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421944

RESUMEN

The acclimation mechanism of Chlamydomonas reinhardtii to nitric oxide (NO) was studied by exposure to S-nitroso-N-acetylpenicillamine (SNAP), a NO donor. Treatment with 0.1 or 0.3 mM SNAP transiently inhibited photosynthesis within 1 h, followed by a recovery, while 1.0 mM SNAP treatment caused irreversible photosynthesis inhibition and mortality. The SNAP effects are avoided in the presence of the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (cPTIO). RNA-seq, qPCR, and biochemical analyses were conducted to decode the metabolic shifts under NO stress by exposure to 0.3 mM SNAP in the presence or absence of 0.4 mM cPTIO. These findings revealed that the acclimation to NO stress comprises a temporally orchestrated implementation of metabolic processes: (1). modulation of NADPH oxidase (respiratory burst oxidase-like 2, RBOL2) and ROS signaling pathways for downstream mechanism regulation, (2). trigger of NO scavenging elements to reduce NO level; (3). prevention of photo-oxidative risk through photosynthesis inhibition and antioxidant defense system induction; (4). acclimation to nitrogen and sulfur shortage; (5). attenuation of transcriptional and translational activity together with degradation of damaged proteins through protein trafficking machinery (ubiquitin, SNARE, and autophagy) and molecular chaperone system for dynamic regulation of protein homeostasis. In addition, the expression of the gene encoding NADPH oxidase, RBOL2, showed a transient increase while that of RBOL1 was slightly decreased after NO challenge. It reflects that NADPH oxidase, a regulator in ROS-mediated signaling pathway, may be involved in the responses of Chlamydomonas to NO stress. In conclusion, our findings provide insight into the molecular events underlying acclimation mechanisms in Chlamydomonas to NO stress.

16.
Sci Rep ; 10(1): 13287, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764698

RESUMEN

Ascorbate peroxidase (APX; EC 1.11.1.11) activity and transcript levels of CrAPX1, CrAPX2, and CrAPX4 of Chlamydomonas reinhardtii increased under 1,400 µE·m-2·s-1 condition (HL). CrAPX4 expression was the most significant. So, CrAPX4 was downregulated using amiRNA technology to examine the role of APX for HL acclimation. The CrAPX4 knockdown amiRNA lines showed low APX activity and CrAPX4 transcript level without a change in CrAPX1 and CrAPX2 transcript levels, and monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) activities and transcript levels. Upon exposure to HL, CrAPX4 knockdown amiRNA lines appeared a modification in the expression of genes encoding the enzymes in the ascorbate-glutathione cycle, including an increase in transcript level of CrVTC2, a key enzyme for ascorbate (AsA) biosynthesis but a decrease in MDAR and DHAR transcription and activity after 1 h, followed by increases in reactive oxygen species production and lipid peroxidation after 6 h and exhibited cell death after 9 h. Besides, AsA content and AsA/DHA (dehydroascorbate) ratio decreased in CrAPX4 knockdown amiRNA lines after prolonged HL treatment. Thus, CrAPX4 induction together with its association with the modulation of MDAR and DHAR expression for AsA regeneration is critical for Chlamydomonas to cope with photo-oxidative stress.


Asunto(s)
Ascorbato Peroxidasas/metabolismo , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/efectos de la radiación , Luz/efectos adversos , Estrés Oxidativo/efectos de la radiación , Ascorbato Peroxidasas/deficiencia , Ascorbato Peroxidasas/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Técnicas de Silenciamiento del Gen
17.
Front Plant Sci ; 11: 772, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587598

RESUMEN

Autophagy plays a role in regulating important cellular functions in response to stress conditions. The role of nitric oxide (NO) in the regulation of autophagy in Chlamydomonas reinhardtii has been not studied. Illumination of C. reinhardtii cells under a high light (HL, 1,600 µmol m-2 s-1) condition induced a NO burst through NO synthase- and nitrate reductase-independent routes, and cell death. The abundance of CrATG8 protein, an autophagy marker of C. reinhardtii, increased after HL illumination along with a linear increase in the transcript abundance of autophagy-associated genes (CrVPS34, CrATG1, CrATG3, CrATG4, CrATG6, CrATG7, CrATG8, and CrATG12), which were suppressed in the presence of an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). The cells were treated with NO donors, S-nitroso-N-acetyl-penicillamine, and S-nitrosoglutathione, under a normal light (50 µmol m-2 s-1) condition to elucidate the role of NO in autophagy activation and cell death. Treatment with 0.05 mM or 0.1 mM NO donors increased the abundance of ATG8 protein and CrATG transcripts, which were suppressed in the presence of cPTIO. Moreover, treatment with 0.05 mM NO donors did not affect cell viability, while 0.1 mM NO donors elicited a transient decrease in cell growth and death that recovered after 12 h. The transient effect could be prevented by the presence of cPTIO. However, treatment with 1 mM H2O2 and 0.1 mM NO donors enhanced autophagy induction and resulted in cell death after 24 h. The interaction of H2O2 and NO can be prevented by cPTIO treatment. This implies that NO is critical for the interaction of H2O2 and NO that induces cell death and autophagy. Furthermore, exposure to 0.1 mM NO donors under a non-lethal HL condition (750 µmol m-2 s-1) evoked autophagy and cell death. In conclusion, the present findings demonstrated that the NO-mediated autophagy pathway is activated in C. reinhardtii under lethal high intensity illumination and may interact with H2O2 for HL-induced cell death. The relationships between autophagy and cell death are discussed.

18.
Mar Biotechnol (NY) ; 11(2): 199-209, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18758860

RESUMEN

The modulation of manganese superoxide dismutase (MnSOD), FeSOD, ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT) gene expression and activities and antioxidants in Ulva fasciata against hypersalinity (90 per thousand)-induced oxidative stress was studied. Increases in H(2)O(2) contents but no changes in lipid peroxidation and protein carbonyl group contents suggest oxidative damage did not occur in 90 per thousand condition. Antioxidants were consumed for reactive oxygen species (ROS) scavenging indicated by decreased ascorbate and glutathione contents by 90 per thousand. Antioxidant enzymes were differently expressed by 90 per thousand for ROS removal. MnSOD activity and transcript increased 1 h after 90 per thousand treatment with a peak at hour 3, while FeSOD activity increased fast to the plateau after 1 h and its transcript increased after 3 h. APX activity increased 1 h after 90 per thousand but its transcript rose till 3 h, and GR activity increased after 1 h with a peak at hour 3 but its transcript increased till 3 h. CAT activity and transcript increased after 12 h. Enzyme activity is transcriptionally regulated by 90 per thousand except a fast increase in FeSOD, APX, and GR activities during 1 h. APX is responsible for early H(2)O(2) decomposition while CAT scavenges H(2)O(2) in the later period. The inhibition of 90 per thousand induced increase of H(2)O(2) content and FeSOD activity and transcript by treatment of a H(2)O(2) scavenger, dimethylthiourea, and the increase of FeSOD transcript of 30 per thousand grown thalli by H(2)O(2) treatment suggest that H(2)O(2) mediates the upregulation of FeSOD by hypersalinity while other enzymes is modulated by factors other than H(2)O(2).


Asunto(s)
Antioxidantes/metabolismo , Enzimas/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Salinidad , Cloruro de Sodio/farmacología , Ulva/efectos de los fármacos , Ulva/enzimología , Regulación hacia Arriba/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica , Peróxido de Hidrógeno/análisis , Carbonilación Proteica , Sustancias Reactivas al Ácido Tiobarbitúrico , Factores de Tiempo
19.
Mar Environ Res ; 67(1): 8-16, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19036429

RESUMEN

Ultraviolet-B (UV-B) radiation (0.5, 1.0, 1.5, and 3.0Wm(-2)) induced higher H(2)O(2) production and lipid peroxidation in alga Gelidium amansii inhabiting in lower subtidal regions than upper subtidal alga Ptercladiella capillacea. Compared to G. amansii, mycosporine-like amino acid (MAA) concentration in P. capillacea was higher and can be increased by 0.5-1.0Wm(-2) UV-B, while carotenoid concentration was lower but also increased by 1.5-3.0Wm(-2) UV-B. UV-B increased ascorbate concentration, but to a higher degree in P. capillacea. UV-B decreased glutathione concentration, but to a higher degree in G. amansii. UV-B increased ascorbate peroxidase (APX) and glutathione reductase (GR) activities in P.capillacea but decreased them in G. amansii. UV-B increased superoxide dismutase and catalase activities, but to a higher degree in G. amansii. So, G. amansii suffered greater oxidative stress from UV-B radiation. P. capillacea can effectively reduce UV-B sensitivity by increasing sunscreen ability and antioxidant defense capacity.


Asunto(s)
Antioxidantes/metabolismo , Rhodophyta/fisiología , Rhodophyta/efectos de la radiación , Rayos Ultravioleta , Aminoácidos/metabolismo , Carotenoides/metabolismo , Enzimas/metabolismo , Peróxido de Hidrógeno/metabolismo , Rhodophyta/enzimología , Rhodophyta/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
20.
Biotechnol Biofuels ; 12: 251, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31641373

RESUMEN

BACKGROUND: The increasing emission of flue gas from industrial plants contributes to environmental pollution, global warming, and climate change. Microalgae have been considered excellent biological materials for flue gas removal, particularly CO2 mitigation. However, tolerance to high temperatures is also critical for outdoor microalgal mass cultivation. Therefore, flue gas- and thermo-tolerant mutants of Chlorella vulgaris ESP-31 were generated and characterized for their ability to grow under various conditions. RESULTS: In this study, we obtained two CO2- and thermo-tolerant mutants of Chlorella vulgaris ESP-31, namely, 283 and 359, with enhanced CO2 tolerance and thermo-tolerance by using N-methyl-N-nitro-N-nitrosoguanidine (NTG) mutagenesis followed by screening at high temperature and under high CO2 conditions with the w-zipper pouch selection method. The two mutants exhibited higher photosynthetic activity and biomass productivity than that of the ESP-31 wild type. More importantly, the mutants were able to grow at high temperature (40 °C) and a high concentration of simulated flue gas (25% CO2, 80-90 ppm SO2, 90-100 ppm NO) and showed higher carbohydrate and lipid contents than did the ESP-31 wild type. CONCLUSIONS: The two thermo- and flue gas-tolerant mutants of Chlorella vulgaris ESP-31 were useful for CO2 mitigation from flue gas under heated conditions and for the production of carbohydrates and biodiesel directly using CO2 from flue gas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA