RESUMEN
Oxo-bridged trimeric chromium acetate clusters [Cr3 O(OOCCH3 )6 (H2 O)3 ]NO3 have been encapsulated for the first time in the mesoporous cages of the chromium terephthalate MIL-101(Cr). The isolated clusters in MIL-101(Cr) have increased affinity towards propylene compared to propane, due to generation of a new kind of pocket-based propylene-binding site, as supported by DFT calculations.
RESUMEN
The synthesis optimization and scale-up of the benchmarked microporous zirconium terephthalate UiO-66(Zr) were investigated by evaluating the impact of several parameters (zirconium precursors, acidic conditions, addition of water, and temperature) over the kinetics of crystallization by time-resolved in situ energy-dispersive X-ray diffraction. Both the addition of hydrochloric acid and water were found to speed up the reaction. The use of the less acidic ZrOCl2·8H2O as the precursor seemed to be a suitable alternative to ZrCl4·xH2O, avoiding possible reproducibility issues as a consequence of the high hygroscopic character of ZrCl4. ZrOCl2·8H2O allowed the formation of smaller good quality UiO-66(Zr) submicronic particles, paving the way for their use within the nanotechnology domain, in addition to higher reaction yields, which makes this synthesis route suitable for the preparation of UiO-66(Zr) at a larger scale. In a final step, UiO-66(Zr) was prepared using conventional reflux conditions at the 0.5 kg scale, leading to a rather high space-time yield of 490 kg m(-3) day(-1), while keeping physicochemical properties similar to those obtained from smaller scale solvothermally prepared batches.
Asunto(s)
Cloruros/química , Ácidos Ftálicos/síntesis química , Difracción de Rayos X , Circonio/química , Modelos Moleculares , Ácidos Ftálicos/química , PorosidadRESUMEN
In this study, three nitrogen-containing aluminum-based metal-organic frameworks (Al-MOFs), namely, CAU-10pydc, MOF-303, and KMF-1, were investigated for the efficient separation of a C2H2/CO2 gas mixture. Among these three Al-MOFs, KMF-1 demonstrated the highest selectivity for C2H2/CO2 separation (6.31), primarily owing to its superior C2H2 uptake (7.90 mmol g-1) and lower CO2 uptake (2.82 mmol g-1) compared to that of the other two Al-MOFs. Dynamic breakthrough experiments, using an equimolar binary C2H2/CO2 gas mixture, demonstrated that KMF-1 achieved the highest separation performance. It yielded 3.42 mmol g-1 of high-purity C2H2 (>99.95%) through a straightforward desorption process under He purging at 298 K and 1 bar. To gain insights into the distinctive characteristics of the pore surfaces of structurally similar CAU-10pydc and KMF-1, we conducted computational simulations using canonical Monte Carlo and dispersion-corrected density functional theory methods. These simulations revealed that the secondary amine (C2N-H) groups in KMF-1 played a more significant role in differentiating between C2H2 and CO2 compared to that of the N atoms in CAU-10pydc and MOF-303. Consequently, KMF-1 emerged as a promising adsorbent for the separation of high-purity C2H2 from binary C2H2/CO2 gas mixtures.
RESUMEN
Different phases in hybrid complexes of Co(II) with cis-4-cyclohexene-1-2-dicarboxylicacid (C6H8-1,2-CO2H=Cy-H2) have been generated depending on the reaction conditions. By microwave-irradiation of the same reaction mixtures at different temperatures we have obtained two new phases Co(C8H8O4) x H2O and [Co2(OH)2.8(Cy-H)1.2]. These phases have been established by XRD, UV-DRS, IR and thermo-gravimetric studies as well as by comparison with the reported phases. In these phases the Cy is found in a cis conformation. It has been seen that microwave synthesis proves to be a rapid and clean method of obtaining new high temperature phases in high purity which are obtained, in an impure state after a long time of hydrothermal synthesis.
RESUMEN
A series of Al-based isomorphs (CAU-10H, MIL-160, KMF-1, and CAU-10pydc) were synthesized using isophthalic acid (ipa), 2,5-furandicarboxylic acid (fdc), 2,5-pyrrole dicarboxylic acid (pyrdc), and 3,5-pyridinedicarboxylic acid (pydc), respectively. These isomorphs were systematically investigated to identify the best adsorbent for effectively separating C2H6/C2H4. All CAU-10 isomorphs exhibited preferential adsorption of C2H6 over that of C2H4 in mixture. CAU-10pydc exhibited the best C2H6/C2H4 selectivity (1.68) and the highest C2H6 uptake (3.97 mmol g-1) at 298 K and 1 bar. In the breakthrough experiment using CAU-10pydc, 1/1 (v/v) and 1/15 (v/v) C2H6/C2H4 gas mixtures were successfully separated into high-purity C2H4 (>99.95%), with remarkable productivities of 14.0 LSTP kg-1 and 32.0 LSTP kg-1, respectively, at 298 K. Molecular simulations revealed that the exceptional separation performance of CAU-10pydc originated from the increased porosity and reduced electron density of the pyridine ring of pydc, leading to a relatively larger decrease in π-π interactions with C2H4 than in the C-H···π interactions with C2H6. This study demonstrates that the pore size and geometry of the CAU-10 platform are modulated by the inclusion of heteroatom-containing benzene dicarboxylate or heterocyclic rings of dicarboxylate-based organic linkers, thereby fine-tuning the C2H6/C2H4 separation ability. CAU-10pydc was determined to be an optimum adsorbent for this challenging separation.
RESUMEN
Water adsorption-driven heat transfer (AHT) technology has emerged as a promising solution to address crisis of the global energy consumption and environmental pollution of current heating and cooling processes. Hydrophilicity of water adsorbents plays a decisive role in these applications. This work reports an easy, green, and inexpensive approach to tuning the hydrophilicity of metal-organic frameworks (MOFs) by incorporating mixed linkers, isophthalic acid (IPA), and 3,5-pyridinedicarboxylic acid (PYDC), with various ratios in a series of Al-xIPA-(100-x)PYDC (x: feeding ratio of IPA) MOFs. The designed mixed-linkers MOFs show a variation of hydrophilicity along the fraction of the linkers. Representative compounds with a proportional mixed linker ratio denoted as KMF-2, exhibit an S-shaped isotherm, an excellent coefficient of performance of 0.75 (cooling) and 1.66 (heating) achieved with low driving temperature below 70 °C which offers capability to employ solar or industrial waste heat, remarkable volumetric specific energy capacity (235 kWh m-3 ) and heat-storage capacity (330 kWh m-3 ). The superiority of KMF-2 to IPA or PYDC-containing single-linker MOFs (CAU-10-H and CAU-10pydc, respectively) and most of benchmark adsorbents illustrate the effectiveness of the mixed-linker strategy to design AHT adsorbents with promising performance.
RESUMEN
Powder, agglomerates, and tablets of the microporous zirconium(IV) terephthalate metal-organic framework UiO-66 were evaluated for the selective adsorption and separation of xylene isomers in the liquid phase using n-heptane as the eluent. Pulse experiments, performed at 313 K in the presence of n-heptane, revealed the o-xylene preference of this material, which was further confirmed by binary and multicomponent breakthrough experiments in the presence of m- and p-xylene, resulting in selectivities at 313 K of 1.8 and 2.4 with regards to m-xylene and p-xylene, respectively. Additionally, because p-xylene is the less retained isomer, UiO-66 presents a selectivity pattern that is reverse of that of the xylenes' molecular dimension with respect to shape selectivity. The shaping of the material as tablets did not significantly change its selectivity toward the o-xylene isomer or toward p-xylene, which was the less retained isomer, despite a loss in capacity. Finally, the selectivity behavior of UiO-66 in the liquid n-heptane phase makes it a suitable material for o-xylene separation in the extract (heavy product) or p-xylene separation in the raffinate (light product) by simulated moving bed technology.
Asunto(s)
Compuestos Organometálicos/química , Ácidos Ftálicos/química , Xilenos/química , Circonio/química , Adsorción , Isomerismo , Modelos Moleculares , Conformación Molecular , TemperaturaRESUMEN
Among the most promising methods by which to capture CO2 from flue gas, the emission of which has accelerated global warming, is energy-efficient physisorption using metal-organic framework (MOF) adsorbents. Here, we present a novel cuprous-based ultramicroporous MOF, Cu(adci)-2 (adci- = 2-amino-4,5-dicyanoimidazolate), which was rationally synthesized by combining two strategies to design MOF physisorbents for enhanced CO2 capturing, i.e., aromatic amine functionalization and the introduction of ultramicroporosity (pore size <7 Å). Synchrotron powder X-ray diffraction and a Rietveld analysis reveal that the Cu(adci)-2 structure has one-dimensional square-shaped channels, in each of which all affiliated ligands, specifically NH2 groups at the 2-position of the imidazolate ring, have the same orientation, with a pair of NH2 groups therefore facing each other on opposite sides of the channel walls. While Cu(adci)-2 exhibits a high CO2 adsorption capacity (2.01 mmol g-1 at 298 K and 15 kPa) but a low zero-coverage isosteric heat of adsorption (27.5 kJ mol-1), breakthrough experiments under dry and 60% relative humidity conditions show that its CO2 capture ability is retained even in the presence of high amounts of moisture. In a Monte Carlo simulation and a radial distribution analysis, the preferential CO2 binding site of Cu(adci)-2 was predicted to be between two ligands, forming a sandwich-like structure and implying that its CO2 adsorption properties originate from the enhancement of Lewis base-acid and London dispersion interactions due to the amino groups and ultramicroporosity, respectively.
RESUMEN
The development of a high-performance ethane (C2H6)-selective adsorbent for the separation of ethane/ethylene (C2H6/C2H4) gas mixtures has been investigated for high-efficiency adsorption-based gas separation. Herein, we investigated Al-based metal-organic frameworks (MOFs) to identify an efficient C2H6-selective adsorbent (CAU-11), supported by a computational simulation study. CAU-11 exhibited numerous advantageous properties (such as low material cost, structural robustness, high reaction yield, and high C2H6/C2H4 selectivity) compared to other Al-based MOFs, indicating immense potential as a C2H6-selective adsorbent. CAU-11 exhibited preferential C2H6 adsorption in single-component gas adsorption experiments, and its predicted ideal adsorption solution theory selectivity of C2H6/C2H4 was over 2.1, consistent with the simulation analysis. Dynamic breakthrough experiments using representative compositions of the C2H6/C2H4 gas mixture confirmed the excellent separation ability of CAU-11; it produced high-purity C2H4 (>99.95%) with productivity values of 0.79 and 2.02 mol L-1 while repeating the cyclic experiment with 1:1 and 1:15 v/v C2H6/C2H4 gas mixtures, respectively, at 298 K and 1 bar. The high C2H6/C2H4 separation ability of CAU-11 could be attributed to its non-polar pore environment and optimum pore dimensions which strengthen the interaction of its pores (via C-H···π interactions) with C2H6 to a greater extent than with C2H4.
RESUMEN
Zeolites and metal-organic frameworks (MOFs) are considered as "competitors" for new separation processes. The production of high-quality gasoline is currently achieved through the total isomerization process that separates pentane and hexane isomers while not reaching the ultimate goal of a research octane number (RON) higher than 92. This work demonstrates how a synergistic action of the zeolite 5A and the MIL-160(Al) MOF leads to a novel adsorptive process for octane upgrading of gasoline through an efficient separation of isomers. This innovative mixed-bed adsorbent strategy encompasses a thermodynamically driven separation of hexane isomers according to the degree of branching by MIL-160(Al) coupled to a steric rejection of linear isomers by the molecular sieve zeolite 5A. Their adsorptive separation ability is further evaluated under real conditions by sorption breakthrough and continuous cyclic experiments with a mixed bed of shaped adsorbents. Remarkably, at the industrially relevant temperature of 423 K, an ideal sorption hierarchy of low RON over high RON alkanes is achieved, i.e., n-hexane â« n-pentane â« 2-methylpentane > 3-methylpentane â 2,3-dimethylbutane > isopentane ≈ 2,2-dimethylbutane, together with a productivity of 1.14 mol dm-3 and a high RON of 92, which is a leap-forward compared with existing processes.
RESUMEN
Adsorption-driven heat transfer devices incorporating an efficient "adsorbent-water" working pair are attracting great attention as a green and sustainable technology to address the huge global energy demands for cooling and heating. Herein, we report the improved heat transfer performance of a defective Zr fumarate metal-organic framework (MOF) prepared in a water solvent (Zr-Fum HT). This material exhibits an S-shaped water sorption isotherm (P/P0 = 0.05-0.2), excellent working capacity (0.497 mLH2O mL-1MOF) under adsorption-driven cooling/chiller working conditions (Tadsorption(ads) = 30 °C, Tcondensation (con) = 30 °C, and Tdesorption(des) = 80 °C), very high coefficient of performances for both cooling (0.83) and heating (1.76) together with a relatively low driving temperature at 80 °C, a remarkable heat storage capacity (423.6 kW h m-3MOF), and an outstanding evaporation heat (343.8 kW h m-3MOF). The level of performance of the resultant Zr-Fum HT MOF is above those of all existing benchmark water adsorbents including MOF-801 previously synthesized in the N,N-dimethylformamide solvent under regeneration at 80 °C which is accessible from the solar source. This is coupled with many other decisive advantages including green synthesis and high proven chemical and mechanical robustness. The microscopic water adsorption mechanism of Zr-Fum HT at the origin of its excellent water adsorption performance was further explored computationally based on the construction of an atomistic defective model online with the experimental data gained from a subtle combination of characterization techniques.
RESUMEN
Adsorption-driven heat transfer technology using water as working fluid is a promising eco-friendly strategy to address the exponential increase of global energy demands for cooling and heating purposes. Here we present the water sorption properties of a porous aluminum carboxylate metal-organic framework, [Al(OH)(C6H3NO4)]·nH2O, KMF-1, discovered by a joint computational predictive and experimental approaches, which exhibits step-like sorption isotherms, record volumetric working capacity (0.36 mL mL-1) and specific energy capacity (263 kWh m-3) under cooling working conditions, very high coefficient of performances of 0.75 (cooling) and 1.74 (heating) together with low driving temperature below 70 °C which allows the exploitation of solar heat, high cycling stability and remarkable heat storage capacity (348 kWh m-3). This level of performances makes this porous material as a unique and ideal multi-purpose water adsorbent to tackle the challenges of thermal energy storage and its further efficient exploitation for both cooling and heating applications.
RESUMEN
Unique chemical and thermal stabilities of a zirconium-based metal-organic framework (MOF) and its functionalized analogues play a key role to efficiently remove chemical warfare agents (ex., cyanogen chloride, CNCl) and simulant (dimethyl methylphosphonate, DMMP) as well as industrial toxic gas, ammonia (NH3). Herein, we for the first time demonstrate outstanding performance of MOF-808 for removal of toxic chemicals in humid environment via special design of functionalization of hydroxo species bridging Zr-nodes using a triethylenediamine (TEDA) to form ionic frameworks by gas phase acid-base reactions. In situ experimental analyses and first-principles density functional theory calculations unveil underlying mechanism on the selective deposition of TEDA on the Zr-bridging hydroxo sites (µ3-OH) in Zr-MOFs. The crystal structure of TEDA-grafted MOF-808 was confirmed using synchrotron X-ray powder diffraction (SXRPD). Furthermore, operando FT-IR spectra elucidate why the TEDA-grafted MOF-808 shows by far superior sorption efficiency to other MOF varieties. This work provides design principles and applications how to optimize MOFs for the preparation for versatile adsorbents using diamine grafting chemistry, which is also potentially applicable to various catalysis.
RESUMEN
We have fabricated solidified electrolytes by using an ionic liquid (BMI TFST) and TiO(2); the electrolyte materials exhibit a high conductivity of 10(-2) S cm(-1) at intermediate temperatures due to self-assembled ionic transport channels.
RESUMEN
Three promising MOF candidates, UiO-66(Zr), MIL-100(Fe) and MIL-127(Fe) are shaped through granulation with a ρ-alumina binder. Subsequently, changes in the surface characteristics and adsorption performance are evaluated through adsorption microcalorimetry at 303 K with several common probes (N2, CO2, CO, CH4, C2H6, C3H8, C3H6 and C4H10), generating a detailed picture of adsorbate-adsorbent interactions. Vapour adsorption experiments with water and methanol were further used to gauge changes in hydrophobicity caused by the addition of the alumina binder. Upon shaping, a decrease in gravimetric capacity and specific surface area is observed, accompanied by an increased capacity on a volumetric basis, attributed to densification induced by the shaping process, as well as a surprising lack of pore environment changes. However, the magnitude of these effects depends on the MOF, suggesting a high dependence on material structure. Out of the three materials, MIL-127(Fe) shows the least changes in adsorption performance and is highlighted as a promising candidate for further study.
RESUMEN
Polyaniline (PA)-MOF nanocomposites have been successfully synthesized through an in-situ chemical oxidative polymerization of aniline in the presence of nano-sized iron trimestate (named as MIL-100(Fe)) particles, which was prepared by a microwave-irradiation method. Water sorption and humidity sensing results clearly showed that water sorption rate and humidity sensitivity are dramatically enhanced by the composites using nano-sized MIL-100(Fe) as compared with that using micrometer-sized MIL-100(Fe) particles.
RESUMEN
Uptake and release processes of various fluorescent rhodamine dyes and antitumor drugs to/from an ordered mesoporous silica film are investigated by means of UV/Vis absorption and fluorescence spectroscopies. The pores in the 160 nm-thick silica film strongly withdraw the dyes from water, thus allowing the storage of several micrograms of guest molecules per square centimeter of film. The binding equilibrium of the dyes follows a Langmuir-type adsorption. The dissociation constant, K(d), and the maximum binding amount to the film, N(ads)(infinity), are determined by fitting the binding curves. The release kinetics of the guests from the film to a simulated body fluid (SBF) solution follows a bimodal first-order exponential behavior. The release kinetics from the mesoporous thin film is remarkably retarded relative to that from mesoporous powders. Among all the studied dyes, rhodamine 101 is released most slowly, which implies that the release rate depends not only on the interactions between the guests and the silica surface, but also on intermolecular interactions between the guest molecules. Comparison of the release kinetics of different antitumor drugs, such as actinomycin D and mitoxantrone, into an SBF solution shows that mitoxantrone is released much slowly. This slower release is attributed to the positive molecular charge and the formation of dimers in the pores.
RESUMEN
We herein describe novel amine-grafted metal-organic frameworks (MOFs) as a promising alternative to natural peroxidase enzyme and their applications for a fluorescent assay of choline (Cho) and acetylcholine (ACh). Among diverse amine-functionalized MOFs, N,N,N',N'-tetramethyl-1,4-butanediamine (TMBDA)-functionalized MIL-100(Fe) (TMBDA-MIL-100(Fe)) exhibited the highest peroxidase activity by developing intense fluorescence from Amplex UltraRed (AUR) in the presence of H2O2, which was presumably due to the synergetic effect of the enhanced negative potential and precisely controlled molecular size of the grafted diamine. Based on the excellent peroxidase-like activity of TMBDA-MIL-100(Fe), choline and ACh were reliably determined down to 0.027 and 0.036µM, respectively. Furthermore, practical applicability of this strategy was successfully demonstrated by detecting choline and ACh in spiked samples of milk and serum, respectively. This work highlights the advantages of amine-grafted MOFs for the preparation of biomimetic catalysts, extending their scope to biosensor applications.
Asunto(s)
Acetilcolina/análisis , Técnicas Biosensibles/métodos , Colina/análisis , Compuestos de Hierro/química , Peroxidasa/química , Putrescina/análogos & derivados , Acetilcolina/sangre , Aminación , Animales , Catálisis , Colina/sangre , Humanos , Leche/química , Modelos Moleculares , Compuestos Organometálicos/química , Putrescina/química , Espectrometría de Fluorescencia/métodosRESUMEN
The energy-storage capacities of a series of water-stable porous metal-organic frameworks, based on high-valence metal cations (Al3+ , Fe3+ , Cr3+ , Ti4+ , Zr4+ ) and polycarboxylate linkers, were evaluated under the typical conditions of seasonal energy-storage devices. The results showed that the microporous hydrophilic Al-dicarboxylate MIL-160(Al) exhibited one of the best performances. To assess the properties of this material for space-heating applications on a laboratory pilot scale with an open reactor, a new synthetic route involving safer, greener conditions was developed. This led to the production of MIL-160(Al) on a 400â g scale, before the material was shaped into pellets through a wet-granulation method. The material exhibited a very high energy-storage capacity for a physical-sorption material (343â Wh kg-1 ), which is in full agreement with the predicted value.
Asunto(s)
Aluminio/química , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Técnicas de Química Sintética , Modelos Moleculares , Conformación MolecularRESUMEN
The synthesis of Pt thin films with a controlled nanoscopic architecture that can support surface enhanced Raman scattering (SERS) is reported. The syntheses are achieved by replicating the pores of a type of mesoporous silica thin film whose pore structure could be described as a regular array of vertical channels of approximately 9 nm in diameter and their interconnections, forming a 3-dimensional pore network. Electrochemical deposition into the pores followed by the removal of the templates produced Pt films composed of arrays of vertically standing Pt nanorods with narrow gaps between them. The 3-dimensional nanostructure increases the surface area and enables the Pt film to absorb visible light. SERS studies of rhodamine 6G and benzenethiol on such Pt films as substrates reveals that the control of the nanostructure is critical for the SERS effect.