Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 81(15): 3128-3144.e7, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216544

RESUMEN

Mutations in BRCA1 or BRCA2 (BRCA) is synthetic lethal with poly(ADP-ribose) polymerase inhibitors (PARPi). Lethality is thought to derive from DNA double-stranded breaks (DSBs) necessitating BRCA function in homologous recombination (HR) and/or fork protection (FP). Here, we report instead that toxicity derives from replication gaps. BRCA1- or FANCJ-deficient cells, with common repair defects but distinct PARPi responses, reveal gaps as a distinguishing factor. We further uncouple HR, FP, and fork speed from PARPi response. Instead, gaps characterize BRCA-deficient cells, are diminished upon resistance, restored upon resensitization, and, when exposed, augment PARPi toxicity. Unchallenged BRCA1-deficient cells have elevated poly(ADP-ribose) and chromatin-associated PARP1, but aberrantly low XRCC1 consistent with defects in backup Okazaki fragment processing (OFP). 53BP1 loss resuscitates OFP by restoring XRCC1-LIG3 that suppresses the sensitivity of BRCA1-deficient cells to drugs targeting OFP or generating gaps. We highlight gaps as a determinant of PARPi toxicity changing the paradigm for synthetic lethal interactions.


Asunto(s)
Proteína BRCA1/genética , Replicación del ADN/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Animales , Línea Celular , Cisplatino/farmacología , ADN/genética , ADN/metabolismo , ADN de Cadena Simple/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Recombinación Homóloga/efectos de los fármacos , Humanos , Ratones Endogámicos NOD , ARN Helicasas/genética , Recombinasa Rad51/genética , Proteína de Replicación A/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética
3.
PLoS Genet ; 16(12): e1009256, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370257

RESUMEN

Endogenous genotoxic stress occurs in healthy cells due to competition between DNA replication machinery, and transcription and topographic relaxation processes. This causes replication fork stalling and regression, which can further collapse to form single-ended double strand breaks (seDSBs). Super-resolution microscopy has made it possible to directly observe replication stress and DNA damage inside cells, however new approaches to sample preparation and analysis are required. Here we develop and apply multicolor single molecule microscopy to visualize individual replication forks under mild stress from the trapping of Topoisomerase I cleavage complexes, a damage induction which closely mimics endogenous replicative stress. We observe RAD51 and RAD52, alongside RECQ1, as the first responder proteins to stalled but unbroken forks, whereas Ku and MRE11 are initially recruited to seDSBs. By implementing novel super-resolution imaging assays, we are thus able to discern closely related replication fork stress motifs and their repair pathways.


Asunto(s)
Roturas del ADN de Doble Cadena , Replicación del ADN , ADN/química , Imagen Individual de Molécula/métodos , Línea Celular Tumoral , ADN/genética , Humanos , Proteína Homóloga de MRE11/metabolismo , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , RecQ Helicasas/metabolismo
4.
PLoS Genet ; 16(6): e1008740, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32542039

RESUMEN

FANCJ/BRIP1 is an iron-sulfur (FeS) cluster-binding DNA helicase involved in DNA inter-strand cross-link (ICL) repair and G-quadruplex (G4) metabolism. Mutations in FANCJ are associated with Fanconi anemia and an increased risk for developing breast and ovarian cancer. Several cancer-associated mutations are located in the FeS domain of FANCJ, but how they affect FeS cluster binding and/or FANCJ activity has remained mostly unclear. Here we show that the FeS cluster is indispensable for FANCJ's ability to unwind DNA substrates in vitro and to provide cellular resistance to agents that induce ICLs. Moreover, we find that FANCJ requires an intact FeS cluster for its ability to unfold G4 structures on the DNA template in a primer extension assay with the lagging-strand DNA polymerase delta. Surprisingly, however, FANCJ variants that are unable to bind an FeS cluster and to unwind DNA in vitro can partially suppress the formation of replisome-associated G4 structures that we observe in a FANCJ knock-out cell line. This may suggest a partially retained cellular activity of FANCJ variants with alterations in the FeS domain. On the other hand, FANCJ knock-out cells expressing FeS cluster-deficient variants display a similar-enhanced-sensitivity towards pyridostatin (PDS) and CX-5461, two agents that stabilise G4 structures, as FANCJ knock-out cells. Mutations in FANCJ that abolish FeS cluster binding may hence be predictive of an increased cellular sensitivity towards G4-stabilising agents.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , G-Cuádruplex , Mutación , ARN Helicasas/genética , Animales , Sitios de Unión , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Células HeLa , Humanos , Unión Proteica , ARN Helicasas/química , ARN Helicasas/metabolismo , Células Sf9 , Spodoptera
5.
Methods Enzymol ; 661: 77-94, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776224

RESUMEN

DNA G-quadruplexes (G4s) are stable, non-canonical DNA secondary structures formed within guanine(G)-rich sequences. While extensively studied in vitro, evidence of the occurrence of G4s in vivo has only recently emerged. The formation of G4 structures may pose an obstacle for diverse DNA transactions including replication, which is linked to mutagenesis and genomic instability. A fundamental question in the field has been whether and how the formation of G4s is coupled to the progression of replication forks. This process has remained undefined largely due to the lack of experimental approaches capable of monitoring the presence of G4s and their association with the replication machinery in cells. Here, we describe a detailed multicolor single-molecule localization microscopy (SMLM) protocol for detecting nanoscale spatial-association of DNA G4s with the cellular replisome complex. This method offers a unique platform for visualizing the mechanisms of G4 formation at the molecular level, as well as addressing key biological questions as to the functional roles of these structures in the maintenance of genome integrity.


Asunto(s)
G-Cuádruplex , Imagen Individual de Molécula , ADN/química , Replicación del ADN , Inestabilidad Genómica , Genómica , Humanos , Imagen Individual de Molécula/métodos
6.
Nat Commun ; 12(1): 2525, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953191

RESUMEN

Guanine-rich DNA sequences occur throughout the human genome and can transiently form G-quadruplex (G4) structures that may obstruct DNA replication, leading to genomic instability. Here, we apply multi-color single-molecule localization microscopy (SMLM) coupled with robust data-mining algorithms to quantitatively visualize replication fork (RF)-coupled formation and spatial-association of endogenous G4s. Using this data, we investigate the effects of G4s on replisome dynamics and organization. We show that a small fraction of active replication forks spontaneously form G4s at newly unwound DNA immediately behind the MCM helicase and before nascent DNA synthesis. These G4s locally perturb replisome dynamics and organization by reducing DNA synthesis and limiting the binding of the single-strand DNA-binding protein RPA. We find that the resolution of RF-coupled G4s is mediated by an interplay between RPA and the FANCJ helicase. FANCJ deficiency leads to G4 accumulation, DNA damage at G4-associated replication forks, and silencing of the RPA-mediated replication stress response. Our study provides first-hand evidence of the intrinsic, RF-coupled formation of G4 structures, offering unique mechanistic insights into the interference and regulation of stable G4s at replication forks and their effect on RPA-associated fork signaling and genomic instability.


Asunto(s)
Replicación del ADN/fisiología , ADN/química , G-Cuádruplex , Imagen Individual de Molécula/métodos , Animales , Biofisica , Línea Celular , Daño del ADN , ADN Helicasas/metabolismo , Proteínas de Unión al ADN , Inestabilidad Genómica , Humanos , Proteínas Recombinantes , Células Sf9
7.
Nat Commun ; 9(1): 3882, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30250272

RESUMEN

Homologous recombination (HR) is a crucial pathway for the repair of DNA double-strand breaks. BRCA1/2 breast cancer proteins are key players in HR via their mediation of RAD51 nucleofilament formation and function; however, their individual roles and crosstalk in vivo are unknown. Here we use super-resolution (SR) imaging to map the spatiotemporal kinetics of HR proteins, revealing the interdependent relationships that govern the dynamic interplay and progression of repair events. We show that initial single-stranded DNA/RAD51 nucleofilament formation is mediated by RAD52 or, in the absence of RAD52, by BRCA2. In contrast, only BRCA2 can orchestrate later RAD51 recombinase activity during homology search and resolution. Furthermore, we establish that upstream BRCA1 activity is critical for BRCA2 function. Our analyses reveal the underlying epistatic landscape of RAD51 functional dependence on RAD52, BRCA1, and BRCA2 during HR and explain the phenotypic similarity of diseases associated with mutations in these proteins.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN de Cadena Simple/metabolismo , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Línea Celular Tumoral , ADN de Cadena Simple/genética , Técnicas de Silenciamiento del Gen , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente/métodos , ARN Interferente Pequeño/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Imagen Individual de Molécula/métodos
8.
Nat Commun ; 9(1): 5376, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30560944

RESUMEN

DNA double-strand breaks (DSBs) are toxic DNA lesions, which, if not properly repaired, may lead to genomic instability, cell death and senescence. Damage-induced long non-coding RNAs (dilncRNAs) are transcribed from broken DNA ends and contribute to DNA damage response (DDR) signaling. Here we show that dilncRNAs play a role in DSB repair by homologous recombination (HR) by contributing to the recruitment of the HR proteins BRCA1, BRCA2, and RAD51, without affecting DNA-end resection. In S/G2-phase cells, dilncRNAs pair to the resected DNA ends and form DNA:RNA hybrids, which are recognized by BRCA1. We also show that BRCA2 directly interacts with RNase H2, mediates its localization to DSBs in the S/G2 cell-cycle phase, and controls DNA:RNA hybrid levels at DSBs. These results demonstrate that regulated DNA:RNA hybrid levels at DSBs contribute to HR-mediated repair.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , ARN Largo no Codificante/metabolismo , Reparación del ADN por Recombinación , Ribonucleasa H/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/genética , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Fase G2/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Ribonucleasa H/genética , Fase S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA