Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 117(7): 076101, 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27563976

RESUMEN

Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

2.
Ultramicroscopy ; 219: 113119, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32987248

RESUMEN

The realization of chromatic aberration correction enables energy-filtered transmission electron microscopy (EFTEM) at atomic resolution even for large energy windows. Previous works have demonstrated lattice contrast from ionization-edge signals such as the L2,3 edges of silicon or titanium. However, the direct interpretation as chemical information was found to be hampered by contributions from elastic contrast with dynamic scattering, especially for thick samples. Here we demonstrate that even for thin samples with light atoms, the interpretation of the ionization-edge signal is complicated by inversions from bright-atom to dark-atom contrast. Our EFTEM experiments for graphene show lattice contrast in the carbon K-edge signal, and we find bright-atom and dark-atom contrast for different defoci.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 4): 532-549, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830711

RESUMEN

The pair distribution function (PDF) is a versatile tool to describe the structure of disordered and amorphous materials. Electron PDF (ePDF) uses the advantage of strong scattering of electrons, thus allowing small volumes to be probed and providing unique information on structure variations at the nano-scale. The spectrum of ePDF applications is rather broad: from ceramic to metallic glasses and mineralogical to organic samples. The quantitative interpretation of ePDF relies on knowledge of how structural and instrumental effects contribute to the experimental data. Here, a broad overview is given on the development of ePDF as a structure analysis method and its applications to diverse materials. Then the physical meaning of the PDF is explained and its use is demonstrated with several examples. Special features of electron scattering regarding the PDF calculations are discussed. A quantitative approach to ePDF data treatment is demonstrated using different refinement software programs for a nanocrystalline anatase sample. Finally, a list of available software packages for ePDF calculation is provided.

4.
Ultramicroscopy ; 197: 16-22, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30468946

RESUMEN

Electron microscopy is a powerful tool for studying the properties of materials down to their atomic structure. In many cases, the quantitative interpretation of images requires simulations based on atomistic structure models. These typically use the independent atom approximation that neglects bonding effects, which may, however, be measurable and of physical interest. Since all electrons and the nuclear cores contribute to the scattering potential, simulations that go beyond this approximation have relied on computationally highly demanding all-electron calculations. Here, we describe a new method to generate ab initio electrostatic potentials when describing the core electrons by projector functions. Combined with an interface to quantitative image simulations, this implementation enables an easy and fast means to model electron scattering. We compare simulated transmission electron microscopy images and diffraction patterns to experimental data, showing an accuracy equivalent to earlier all-electron calculations at a much lower computational cost.

5.
Ultramicroscopy ; 151: 130-135, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25458188

RESUMEN

Here, we present a numerical post-processing method for removing the effect of anti-symmetric residual aberrations in high-resolution transmission electron microscopy (HRTEM) images of weakly scattering 2D-objects. The method is based on applying the same aberrations with the opposite phase to the Fourier transform of the recorded image intensity and subsequently inverting the Fourier transform. We present the theoretical justification of the method, and its verification based on simulated images in the case of low-order anti-symmetric aberrations. Ultimately the method is applied to experimental hardware aberration-corrected HRTEM images of single-layer graphene and MoSe2 resulting in images with strongly reduced residual low-order aberrations, and consequently improved interpretability. Alternatively, this method can be used to estimate by trial and error the residual anti-symmetric aberrations in HRTEM images of weakly scattering objects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA