RESUMEN
Ageing impairs the ability of neural stem cells (NSCs) to transition from quiescence to proliferation in the adult mammalian brain. Functional decline of NSCs results in the decreased production of new neurons and defective regeneration following injury during ageing1-4. Several genetic interventions have been found to ameliorate old brain function5-8, but systematic functional testing of genes in old NSCs-and more generally in old cells-has not been done. Here we develop in vitro and in vivo high-throughput CRISPR-Cas9 screening platforms to systematically uncover gene knockouts that boost NSC activation in old mice. Our genome-wide screens in primary cultures of young and old NSCs uncovered more than 300 gene knockouts that specifically restore the activation of old NSCs. The top gene knockouts are involved in cilium organization and glucose import. We also establish a scalable CRISPR-Cas9 screening platform in vivo, which identified 24 gene knockouts that boost NSC activation and the production of new neurons in old brains. Notably, the knockout of Slc2a4, which encodes the GLUT4 glucose transporter, is a top intervention that improves the function of old NSCs. Glucose uptake increases in NSCs during ageing, and transient glucose starvation restores the ability of old NSCs to activate. Thus, an increase in glucose uptake may contribute to the decline in NSC activation with age. Our work provides scalable platforms to systematically identify genetic interventions that boost the function of old NSCs, including in vivo, with important implications for countering regenerative decline during ageing.
RESUMEN
The mammalian brain contains neurogenic niches that comprise neural stem cells and other cell types. Neurogenic niches become less functional with age, but how they change during ageing remains unclear. Here we perform single-cell RNA sequencing of young and old neurogenic niches in mice. The analysis of 14,685 single-cell transcriptomes reveals a decrease in activated neural stem cells, changes in endothelial cells and microglia, and an infiltration of T cells in old neurogenic niches. T cells in old brains are clonally expanded and are generally distinct from those in old blood, which suggests that they may experience specific antigens. T cells in old brains also express interferon-γ, and the subset of neural stem cells that has a high interferon response shows decreased proliferation in vivo. We find that T cells can inhibit the proliferation of neural stem cells in co-cultures and in vivo, in part by secreting interferon-γ. Our study reveals an interaction between T cells and neural stem cells in old brains, opening potential avenues through which to counteract age-related decline in brain function.
Asunto(s)
Envejecimiento/fisiología , Encéfalo/citología , Movimiento Celular , Células-Madre Neurales/citología , Neurogénesis , Análisis de la Célula Individual , Nicho de Células Madre/fisiología , Linfocitos T/citología , Animales , Sangre , Proliferación Celular , Células Clonales/citología , Técnicas de Cocultivo , Células Endoteliales/citología , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Análisis de Secuencia de ARN , Transducción de Señal , Linfocitos T/metabolismo , Transcriptoma/genéticaRESUMEN
Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.
Asunto(s)
Adenosina Desaminasa , Primates/genética , Edición de ARN/genética , Proteínas de Unión al ARN , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Femenino , Genotipo , Células HEK293 , Humanos , Masculino , Ratones , Músculos/metabolismo , Proteínas Nucleares/metabolismo , Especificidad de Órganos/genética , Proteolisis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Análisis Espacio-Temporal , Especificidad de la Especie , Transcriptoma/genéticaRESUMEN
The plasticity of ageing suggests that longevity may be controlled epigenetically by specific alterations in chromatin state. The link between chromatin and ageing has mostly focused on histone deacetylation by the Sir2 family, but less is known about the role of other histone modifications in longevity. Histone methylation has a crucial role in development and in maintaining stem cell pluripotency in mammals. Regulators of histone methylation have been associated with ageing in worms and flies, but characterization of their role and mechanism of action has been limited. Here we identify the ASH-2 trithorax complex, which trimethylates histone H3 at lysine 4 (H3K4), as a regulator of lifespan in Caenorhabditis elegans in a directed RNA interference (RNAi) screen in fertile worms. Deficiencies in members of the ASH-2 complex-ASH-2 itself, WDR-5 and the H3K4 methyltransferase SET-2-extend worm lifespan. Conversely, the H3K4 demethylase RBR-2 is required for normal lifespan, consistent with the idea that an excess of H3K4 trimethylation-a mark associated with active chromatin-is detrimental for longevity. Lifespan extension induced by ASH-2 complex deficiency requires the presence of an intact adult germline and the continuous production of mature eggs. ASH-2 and RBR-2 act in the germline, at least in part, to regulate lifespan and to control a set of genes involved in lifespan determination. These results indicate that the longevity of the soma is regulated by an H3K4 methyltransferase/demethylase complex acting in the C. elegans germline.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Células Germinativas/metabolismo , Histonas/metabolismo , Longevidad/fisiología , Lisina/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Trastornos del Desarrollo Sexual , Epigénesis Genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Germinativas/citología , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Longevidad/genética , Masculino , Metilación , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferencia de ARN , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismoRESUMEN
Genetic alterations causing constitutive tyrosine kinase activation are observed in a broad spectrum of cancers. Thus far, these mutant kinases have been localized to the plasma membrane or cytoplasm, where they engage proliferation and survival pathways. We report that the NUP214-ABL1 fusion is unique among these because of its requisite localization to the nuclear pore complex for its transforming potential. We show that NUP214-ABL1 displays attenuated transforming capacity as compared to BCR-ABL1 and that NUP214-ABL1 preferentially transforms T cells, which is in agreement with its unique occurrence in T cell acute lymphoblastic leukemia. Furthermore, NUP214-ABL1 differs from BCR-ABL1 in subcellular localization, initiation of kinase activity, and signaling and lacks phosphorylation on its activation loop. In addition to delineating an unusual mechanism for kinase activation, this study provides new insights into the spectrum of chromosomal translocations involving nucleoporins by indicating that the nuclear pore context itself may play a central role in transformation.
Asunto(s)
Transformación Celular Neoplásica/metabolismo , Poro Nuclear/enzimología , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Línea Celular , Activación Enzimática , Humanos , Ratones , Proteínas de Complejo Poro Nuclear/metabolismoRESUMEN
A repressive chromatin state featuring trimethylated lysine 36 on histone H3 (H3K36me3) and DNA methylation suppresses cryptic transcription in embryonic stem cells. Cryptic transcription is elevated with age in yeast and nematodes, and reducing it extends yeast lifespan, though whether this occurs in mammals is unknown. We show that cryptic transcription is elevated in aged mammalian stem cells, including murine hematopoietic stem cells (mHSCs) and neural stem cells (NSCs) and human mesenchymal stem cells (hMSCs). Precise mapping allowed quantification of age-associated cryptic transcription in hMSCs aged in vitro. Regions with significant age-associated cryptic transcription have a unique chromatin signature: decreased H3K36me3 and increased H3K4me1, H3K4me3, and H3K27ac with age. Genomic regions undergoing such changes resemble known promoter sequences and are bound by TBP even in young cells. Hence, the more permissive chromatin state at intragenic cryptic promoters likely underlies increased cryptic transcription in aged mammalian stem cells.
Asunto(s)
Cromatina , Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Células-Madre Neurales , Animales , Humanos , Ratones , Envejecimiento/genética , Cromatina/genética , Metilación de ADN/genética , Células Madre Embrionarias/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células-Madre Neurales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transcripción GenéticaRESUMEN
Background: Glioblastoma (GBM) is an aggressive, age-associated malignant glioma that contains populations of cancer stem cells. These glioma stem cells (GSCs) evade therapeutic interventions and repopulate tumors due to their existence in a slowly cycling quiescent state. Although aging is well known to increase cancer initiation, the extent to which the mechanisms supporting GSC tumorigenicity are related to physiological aging remains unknown. Aims: Here, we investigate the transcriptional mechanisms by which Forkhead Box O3 (FOXO3), a transcriptional regulator that promotes healthy aging, affects GSC function and the extent to which FOXO3 transcriptional networks are dysregulated in aging and GBM. Methods and results: We performed transcriptome analysis of clinical GBM tumors and observed that high FOXO3 activity is associated with gene expression signatures of stem cell quiescence, reduced oxidative metabolism, and improved patient outcomes. Consistent with these findings, we show that elevated FOXO3 activity significantly reduces the proliferation of GBM-derived GSCs. Using RNA-seq, we find that functional ablation of FOXO3 in GSCs rewires the transcriptional circuitry associated with metabolism, epigenetic stability, quiescence, and differentiation. Since FOXO3 has been implicated in healthy aging, we then investigated the extent to which it regulates common transcriptional programs in aging neural stem cells (NSCs) and GSCs. We uncover a shared transcriptional program and, most strikingly, find that FOXO3-regulated pathways are associated with altered mitochondrial functions in both aging and GBM. Conclusions: This work identifies a FOXO-associated transcriptional program that correlates between GSCs and aging NSCs and is enriched for metabolic and stemness pathways connected with GBM and aging.
RESUMEN
To study the impact of oncogenic K-Ras on T-cell leukemia/lymphoma development and progression, we made use of a conditional K-Ras(G12D) murine knockin model, in which oncogenic K-Ras is expressed from its endogenous promoter. Transplantation of whole bone marrow cells that express oncogenic K-Ras into wild-type recipient mice resulted in a highly penetrant, aggressive T-cell leukemia/lymphoma. The lymphoblasts were composed of a CD4/CD8 double-positive population that aberrantly expressed CD44. Thymi of primary donor mice showed reduced cellularity, and immunophenotypic analysis demonstrated a block in differentiation at the double-negative 1 stage. With progression of disease, approximately 50% of mice acquired Notch1 mutations within the PEST domain. Of note, primary lymphoblasts were hypersensitive to gamma-secretase inhibitor treatment, which is known to impair Notch signaling. This inhibition was Notch-specific as assessed by down-regulation of Notch1 target genes and intracellular cleaved Notch. We also observed that the oncogenic K-Ras-induced T-cell disease was responsive to rapamycin and inhibitors of the RAS/MAPK pathway. These data indicate that patients with T-cell leukemia with K-Ras mutations may benefit from therapies that target the NOTCH pathway alone or in combination with inhibition of the PI3K/AKT/MTOR and RAS/MAPK pathways.
Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Regulación de la Expresión Génica , Genes ras , Leucemia de Células T/genética , Linfoma de Células T/genética , Receptor Notch1/genética , Proteínas ras/fisiología , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Humanos , Receptores de Hialuranos/biosíntesis , Ratones , Ratones Transgénicos , MutaciónRESUMEN
In the adult brain, the neural stem cell (NSC) pool comprises quiescent and activated populations with distinct roles. Transcriptomic analysis revealed that quiescent and activated NSCs exhibited differences in their protein homeostasis network. Whereas activated NSCs had active proteasomes, quiescent NSCs contained large lysosomes. Quiescent NSCs from young mice accumulated protein aggregates, and many of these aggregates were stored in large lysosomes. Perturbation of lysosomal activity in quiescent NSCs affected protein-aggregate accumulation and the ability of quiescent NSCs to activate. During aging, quiescent NSCs displayed defects in their lysosomes, increased accumulation of protein aggregates, and reduced ability to activate. Enhancement of the lysosome pathway in old quiescent NSCs cleared protein aggregates and ameliorated the ability of quiescent NSCs to activate, allowing them to regain a more youthful state.
Asunto(s)
Envejecimiento/fisiología , División Celular , Senescencia Celular , Lisosomas/fisiología , Células-Madre Neurales/fisiología , Animales , Ratones , Ratones Endogámicos C57BLRESUMEN
Neural stem cells (NSCs) in the adult mammalian brain serve as a reservoir for the generation of new neurons, oligodendrocytes, and astrocytes. Here, we use single-cell RNA sequencing to characterize adult NSC populations and examine the molecular identities and heterogeneity of in vivo NSC populations. We find that cells in the NSC lineage exist on a continuum through the processes of activation and differentiation. Interestingly, rare intermediate states with distinct molecular profiles can be identified and experimentally validated, and our analysis identifies putative surface markers and key intracellular regulators for these subpopulations of NSCs. Finally, using the power of single-cell profiling, we conduct a meta-analysis to compare in vivo NSCs and in vitro cultures, distinct fluorescence-activated cell sorting strategies, and different neurogenic niches. These data provide a resource for the field and contribute to an integrative understanding of the adult NSC lineage.
Asunto(s)
Células-Madre Neurales/metabolismo , Transcriptoma , Algoritmos , Animales , Astrocitos/citología , Astrocitos/metabolismo , Diferenciación Celular , Linaje de la Célula , Conexina 43/genética , Conexina 43/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Antígeno Ki-67/metabolismo , Ratones , Células-Madre Neurales/citología , Neurogénesis , Análisis de Componente Principal , ARN/química , ARN/genética , ARN/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
FOXO transcription factors are central regulators of longevity from worms to humans. FOXO3, the FOXO isoform associated with exceptional human longevity, preserves adult neural stem cell pools. Here, we identify FOXO3 direct targets genome-wide in primary cultures of adult neural progenitor cells (NPCs). Interestingly, FOXO3-bound sites are enriched for motifs for bHLH transcription factors, and FOXO3 shares common targets with the proneuronal bHLH transcription factor ASCL1/MASH1 in NPCs. Analysis of the chromatin landscape reveals that FOXO3 and ASCL1 are particularly enriched at the enhancers of genes involved in neurogenic pathways. Intriguingly, FOXO3 inhibits ASCL1-dependent neurogenesis in NPCs and direct neuronal conversion in fibroblasts. FOXO3 also restrains neurogenesis in vivo. Our study identifies a genome-wide interaction between the prolongevity transcription factor FOXO3 and the cell-fate determinant ASCL1 and raises the possibility that FOXO3's ability to restrain ASCL1-dependent neurogenesis may help preserve the neural stem cell pool.
Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Sitios de Unión , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Genoma , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismoRESUMEN
We report that TG101348, a selective small-molecule inhibitor of JAK2 with an in vitro IC50 of approximately 3 nM, shows therapeutic efficacy in a murine model of myeloproliferative disease induced by the JAK2V617F mutation. In treated animals, there was a statistically significant reduction in hematocrit and leukocyte count, a dose-dependent reduction/elimination of extramedullary hematopoiesis, and, at least in some instances, evidence for attenuation of myelofibrosis. There were no apparent toxicities and no effect on T cell number. In vivo responses were correlated with surrogate endpoints, including reduction/elimination of JAK2V617F disease burden assessed by quantitative genomic PCR, suppression of endogenous erythroid colony formation, and in vivo inhibition of JAK-STAT signal transduction as assessed by flow cytometric measurement of phosphorylated Stat5.