Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Genes Dev ; 27(10): 1198-215, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23699412

RESUMEN

Fertilization is a crucial yet poorly characterized event in eukaryotes. Our previous discovery that the broadly conserved protein HAP2 (GCS1) functioned in gamete membrane fusion in the unicellular green alga Chlamydomonas and the malaria pathogen Plasmodium led us to exploit the rare biological phenomenon of isogamy in Chlamydomonas in a comparative transcriptomics strategy to uncover additional conserved sexual reproduction genes. All previously identified Chlamydomonas fertilization-essential genes fell into related clusters based on their expression patterns. Out of several conserved genes in a minus gamete cluster, we focused on Cre06.g280600, an ortholog of the fertilization-related Arabidopsis GEX1. Gene disruption, cell biological, and immunolocalization studies show that CrGEX1 functions in nuclear fusion in Chlamydomonas. Moreover, CrGEX1 and its Plasmodium ortholog, PBANKA_113980, are essential for production of viable meiotic progeny in both organisms and thus for mosquito transmission of malaria. Remarkably, we discovered that the genes are members of a large, previously unrecognized family whose first-characterized member, KAR5, is essential for nuclear fusion during yeast sexual reproduction. Our comparative transcriptomics approach provides a new resource for studying sexual development and demonstrates that exploiting the data can lead to the discovery of novel biology that is conserved across distant taxa.


Asunto(s)
Chlamydomonas/genética , Hongos/genética , Genes Esenciales , Membrana Nuclear/metabolismo , Proteínas Nucleares/clasificación , Plasmodium/genética , Vertebrados/genética , Animales , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/metabolismo , Fertilización/genética , Hongos/crecimiento & desarrollo , Perfilación de la Expresión Génica , Meiosis , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantas/genética , Reproducción/genética , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma/genética
2.
Plant Cell ; 28(2): 367-87, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26764374

RESUMEN

The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids.


Asunto(s)
Chlamydomonas reinhardtii/genética , Proteínas de Plantas/metabolismo , Proteoma , Genética Inversa , Triglicéridos/metabolismo , Chlamydomonas reinhardtii/fisiología , Cloroplastos/metabolismo , Mapeo Cromosómico , Ácidos Grasos/metabolismo , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Lípidos/análisis , Mutagénesis Insercional , Mutación , Fenotipo , Proteínas de Plantas/genética , Análisis de Secuencia de ADN
3.
Plant Cell ; 27(9): 2353-69, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26392080

RESUMEN

We performed whole-genome resequencing of 12 field isolates and eight commonly studied laboratory strains of the model organism Chlamydomonas reinhardtii to characterize genomic diversity and provide a resource for studies of natural variation. Our data support previous observations that Chlamydomonas is among the most diverse eukaryotic species. Nucleotide diversity is ∼3% and is geographically structured in North America with some evidence of admixture among sampling locales. Examination of predicted loss-of-function mutations in field isolates indicates conservation of genes associated with core cellular functions, while genes in large gene families and poorly characterized genes show a greater incidence of major effect mutations. De novo assembly of unmapped reads recovered genes in the field isolates that are absent from the CC-503 assembly. The laboratory reference strains show a genomic pattern of polymorphism consistent with their origin as the recombinant progeny of a diploid zygospore. Large duplications or amplifications are a prominent feature of laboratory strains and appear to have originated under laboratory culture. Extensive natural variation offers a new source of genetic diversity for studies of Chlamydomonas, including naturally occurring alleles that may prove useful in studies of gene function and the dissection of quantitative genetic traits.


Asunto(s)
Chlamydomonas reinhardtii/genética , Variación Genética , Mutación , Alelos , Genoma de Planta , Laboratorios , Familia de Multigenes , Proteínas de Plantas/genética , Polimorfismo Genético , Análisis de Secuencia de ADN
4.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38586028

RESUMEN

Oxygen is known to prevent hydrogen production in Chlamydomonas, both by inhibiting the hydrogenase enzyme and by preventing the accumulation of HYDA-encoding transcripts. We developed a screen for mutants showing constitutive accumulation of HYDA1 transcripts in the presence of oxygen. A reporter gene required for ciliary motility, placed under the control of the HYDA1 promoter, conferred motility only in hypoxic conditions. By selecting for mutants able to swim even in the presence of oxygen we obtained strains that express the reporter gene constitutively. One mutant identified a gene encoding an F-box only protein 3 (FBXO3), known to participate in ubiquitylation and proteasomal degradation pathways in other eukaryotes. Transcriptome profiles revealed that the mutation, termed cehc1-1 , leads to constitutive expression of HYDA1 and other genes regulated by hypoxia, and of many genes known to be targets of CRR1, a transcription factor in the nutritional copper signaling pathway. CRR1 was required for the constitutive expression of the HYDA1 reporter gene in cehc1-1 mutants. The CRR1 protein, which is normally degraded in Cu-supplemented cells, was stabilized in cehc1-1 cells, supporting the conclusion that CEHC1 acts to facilitate the degradation of CRR1. Our results reveal a novel negative regulator in the CRR1 pathway and possibly other pathways leading to complex metabolic changes associated with response to hypoxia.

5.
Biotechnol Bioeng ; 110(1): 143-52, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22833390

RESUMEN

The use of microalgae for biofuel production will be beneficial to society if we can produce biofuels at large scales with minimal mechanical energy input in the production process. Understanding micro-algal physiological responses under variable environmental conditions in bioreactors is essential for the optimization of biofuel production. We demonstrate that measuring micro-algal swimming speed provides information on culture health and total fatty acid accumulation. Three strains of Chlamydomonas reinhardtii were grown heterotrophically on acetate and subjected to various levels of nitrogen starvation. Other nutrient levels were explored to determine their effect on micro-algal kinetics. Swimming velocities were measured with two-dimensional micro-particle tracking velocimetry. The results show an inverse linear relationship between normalized total fatty acid mass versus swimming speed of micro-algal cells. Analysis of RNA sequencing data confirms these results by demonstrating that the biological processes of cell motion and the generation of energy precursors are significantly down-regulated. Experiments demonstrate that changes in nutrient concentration in the surrounding media also affect swimming speed. The findings have the potential for the in situ and indirect assessment of lipid content by measuring micro-algal swimming kinetics.


Asunto(s)
Biocombustibles , Movimiento Celular/fisiología , Chlamydomonas reinhardtii/metabolismo , Ácidos Grasos/metabolismo , Microalgas/metabolismo , Análisis de Varianza , Chlamydomonas reinhardtii/fisiología , Ácidos Grasos/análisis , Flagelos/fisiología , Microalgas/fisiología , Nitrógeno/metabolismo , Reología , Estrés Fisiológico
6.
J Cell Biol ; 176(6): 819-29, 2007 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-17353359

RESUMEN

Little is known about how cells regulate the size of their organelles. In this study, we find that proper flagellar length control in Chlamydomonas reinhardtii requires the activity of a new member of the cyclin-dependent kinase (CDK) family, which is encoded by the LF2 (long flagella 2) gene. This novel CDK contains all of the important residues that are essential for kinase activity but lacks the cyclin-binding motif PSTAIRE. Analysis of genetic lesions in a series of lf2 mutant alleles and site-directed mutagenesis of LF2p reveals that improper flagellar length and defective flagellar assembly correlate with the extent of disruption of conserved kinase structures or residues by mutations. LF2p appears to interact with both LF1p and LF3p in the cytoplasm, as indicated by immunofluorescence localization, sucrose density gradients, cell fractionation, and yeast two-hybrid experiments. We propose that LF2p is the catalytic subunit of a regulatory kinase complex that controls flagellar length and flagellar assembly.


Asunto(s)
Chlamydomonas reinhardtii/ultraestructura , Quinasas Ciclina-Dependientes/fisiología , Flagelos/enzimología , Proteínas Protozoarias/fisiología , Alelos , Secuencias de Aminoácidos , Animales , Chlamydomonas reinhardtii/enzimología , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/genética , Flagelos/ultraestructura , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fenotipo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína , Técnicas del Sistema de Dos Híbridos
7.
Biotechnol Bioeng ; 107(1): 65-75, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20506336

RESUMEN

The objective of this work was to quantify the kinetic behavior of Dunaliella primolecta (D. primolecta) subjected to controlled fluid flow under laboratory conditions. In situ velocities of D. primolecta were quantified by micron-resolution particle image velocimetry and particle tracking velocimetry. Experiments were performed under a range of velocity gradients and corresponding energy dissipation levels at microscopic scales similar to the energy dissipation levels of natural aquatic ecosystems. An average swimming velocity of D. primolecta in a stagnant fluid was 41 microm/s without a preferential flow direction. In a moving fluid, the sample population velocities of D. primolecta follow a log-normal distribution. The variability of sample population velocities was maximal at the highest fluid flow velocity in the channel. Local fluid velocity gradients inhibited the accrual of D. primolecta by twofold 5 days after the initiation of the experiment in comparison to the non-moving fluid control experiment.


Asunto(s)
Chlorophyta/fisiología , Modelos Biológicos , Reología/métodos , Simulación por Computador , Cinética , Movimiento (Física) , Soluciones
8.
J Cell Biol ; 163(3): 597-607, 2003 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-14610061

RESUMEN

Four long-flagella (LF) genes are important for flagellar length control in Chlamydomonas reinhardtii. Here, we characterize two new null lf3 mutants whose phenotypes are different from previously identified lf3 mutants. These null mutants have unequal-length flagella that assemble more slowly than wild-type flagella, though their flagella can also reach abnormally long lengths. Prominent bulges are found at the distal ends of short, long, and regenerating flagella of these mutants. Analysis of the flagella by electron and immunofluorescence microscopy and by Western blots revealed that the bulges contain intraflagellar transport complexes, a defect reported previously (for review see Cole, D.G., 2003. Traffic. 4:435-442) in a subset of mutants defective in intraflagellar transport. We have cloned the wild-type LF3 gene and characterized a hypomorphic mutant allele of LF3. LF3p is a novel protein located predominantly in the cell body. It cosediments with the product of the LF1 gene in sucrose density gradients, indicating that these proteins may form a functional complex to regulate flagellar length and assembly.


Asunto(s)
Chlamydomonas/metabolismo , Flagelos/metabolismo , Proteínas Protozoarias/aislamiento & purificación , Alelos , Secuencia de Aminoácidos/genética , Animales , Secuencia de Bases/genética , Chlamydomonas/genética , Chlamydomonas/ultraestructura , Citoplasma/metabolismo , Citoplasma/ultraestructura , ADN Complementario/análisis , ADN Complementario/genética , Flagelos/patología , Flagelos/ultraestructura , Sustancias Macromoleculares , Microscopía Electrónica , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Proteínas Protozoarias/genética , ARN Mensajero/análisis , ARN Mensajero/genética
9.
J Cell Biol ; 165(5): 663-71, 2004 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-15173189

RESUMEN

How centrioles and basal bodies assemble is a long-standing puzzle in cell biology. To address this problem, we analyzed a novel basal body-defective Chlamydomonas reinhardtii mutant isolated from a collection of flagella-less mutants. This mutant, bld10, displayed disorganized mitotic spindles and cytoplasmic microtubules, resulting in abnormal cell division and slow growth. Electron microscopic observation suggested that bld10 cells totally lack basal bodies. The product of the BLD10 gene (Bld10p) was found to be a novel coiled-coil protein of 170 kD. Immunoelectron microscopy localizes Bld10p to the cartwheel, a structure with ninefold rotational symmetry positioned near the proximal end of the basal bodies. Because the cartwheel forms the base from which the triplet microtubules elongate, we suggest that Bld10p plays an essential role in an early stage of basal body assembly. A viable mutant having such a severe basal body defect emphasizes the usefulness of Chlamydomonas in studying the mechanism of basal body/centriole assembly by using a variety of mutants.


Asunto(s)
Proteínas Algáceas/metabolismo , Centriolos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Algáceas/genética , Proteínas Algáceas/aislamiento & purificación , Secuencia de Aminoácidos/genética , Animales , Secuencia de Bases/genética , Células Cultivadas , Centriolos/genética , Centriolos/ultraestructura , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestructura , ADN Complementario/análisis , ADN Complementario/genética , Flagelos/genética , Flagelos/ultraestructura , Inmunohistoquímica , Microscopía Electrónica , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Animales , Datos de Secuencia Molecular , Orgánulos/genética , Orgánulos/metabolismo , Orgánulos/ultraestructura , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Huso Acromático/genética , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
10.
Nat Genet ; 51(4): 627-635, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30886426

RESUMEN

Photosynthetic organisms provide food and energy for nearly all life on Earth, yet half of their protein-coding genes remain uncharacterized1,2. Characterization of these genes could be greatly accelerated by new genetic resources for unicellular organisms. Here we generated a genome-wide, indexed library of mapped insertion mutants for the unicellular alga Chlamydomonas reinhardtii. The 62,389 mutants in the library, covering 83% of nuclear protein-coding genes, are available to the community. Each mutant contains unique DNA barcodes, allowing the collection to be screened as a pool. We performed a genome-wide survey of genes required for photosynthesis, which identified 303 candidate genes. Characterization of one of these genes, the conserved predicted phosphatase-encoding gene CPL3, showed that it is important for accumulation of multiple photosynthetic protein complexes. Notably, 21 of the 43 higher-confidence genes are novel, opening new opportunities for advances in understanding of this biogeochemically fundamental process. This library will accelerate the characterization of thousands of genes in algae, plants, and animals.


Asunto(s)
Chlamydomonas reinhardtii/genética , Chlorophyta/genética , Eucariontes/genética , Mutación/genética , Fotosíntesis/genética , Biblioteca de Genes , Genoma/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Análisis de Secuencia de ADN/métodos
11.
Curr Biol ; 13(13): 1145-9, 2003 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12842015

RESUMEN

Little is known about the molecular basis of organelle size control in eukaryotes. Cells of the biflagellate alga Chlamydomonas reinhardtii actively maintain their flagella at a precise length. Chlamydomonas mutants that lose control of flagellar length have been isolated and used to demonstrate that a dynamic process keeps flagella at an appropriate length. To date, none of the proteins required for flagellar length control have been identified in any eukaryotic organism. Here, we show that a novel MAP kinase is crucial to enforcing wild-type flagellar length in C. reinhardtii. Null mutants of LF4 [2], a gene encoding a protein with extensive amino acid sequence identity to a mammalian MAP kinase of unknown function, MOK [3], are unable to regulate the length of their flagella. The LF4 protein (LF4p) is localized to the flagella, and in vitro enzyme assays confirm that the protein is a MAP kinase. The long-flagella phenotype of lf4 cells is rescued by transformation with the cloned LF4 gene. The demonstration that a novel MAP kinase helps enforce flagellar length control indicates that a previously unidentified signal transduction pathway controls organelle size in C. reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/fisiología , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Southern Blotting , Flagelos/fisiología , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Alineación de Secuencia , Análisis de Secuencia de ADN
12.
Genetics ; 169(3): 1415-24, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15489537

RESUMEN

Flagellar length is tightly regulated in the biflagellate alga Chlamydomonas reinhardtii. Several genes required for control of flagellar length have been identified, including LF1, a gene required to assemble normal-length flagella. The lf1 mutation causes cells to assemble extra-long flagella and to regenerate flagella very slowly after amputation. Here we describe the positional cloning and molecular characterization of the LF1 gene using a bacterial artificial chromosome (BAC) library. LF1 encodes a protein of 804 amino acids with no obvious sequence homologs in other organisms. The single LF1 mutant allele is caused by a transversion that produces an amber stop at codon 87. Rescue of the lf1 phenotype upon transformation was obtained with clones containing the complete LF1 gene as well as clones that lack the last two exons of the gene, indicating that only the amino-terminal portion of the LF1 gene product (LF1p) is required for function. Although LF1 helps regulate flagellar length, the LF1p localizes almost exclusively in the cell body, with <1% of total cellular LF1p localizing to the flagella.


Asunto(s)
Chlamydomonas reinhardtii/genética , Flagelos/genética , Flagelos/ultraestructura , Genes Protozoarios , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Animales , Chlamydomonas reinhardtii/fisiología , Chlorophyta/genética , Clonación Molecular , ADN Protozoario/genética , Datos de Secuencia Molecular , Movimiento , ARN Protozoario/genética , Mapeo Restrictivo
13.
Mol Biol Cell ; 24(5): 588-600, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23283985

RESUMEN

The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes-LF1, LF2, LF3, and LF4-cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases. Here we describe a new gene, LF5, in which null mutations cause cells to assemble flagella of excess length. The LF5 gene encodes a protein kinase very similar in sequence to the protein kinase CDKL5. In humans, mutations in this kinase cause a severe form of juvenile epilepsy. The LF5 protein localizes to a unique location: the proximal 1 µm of the flagella. The proximal localization of the LF5 protein is lost when genes that make up the proteins in the cytoplasmic length regulatory complex (LRC)-LF1, LF2, and LF3-are mutated. In these mutants LF5p becomes localized either at the distal tip of the flagella or along the flagellar length, indicating that length regulation involves, at least in part, control of LF5p localization by the LRC.


Asunto(s)
Chlamydomonas/genética , Flagelos/genética , Proteínas Serina-Treonina Quinasas/genética , Chlamydomonas/crecimiento & desarrollo , Epilepsia Tipo Ausencia/genética , Flagelos/ultraestructura , Humanos , Mutación , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/genética
14.
Biotechnol Prog ; 29(4): 853-61, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23754623

RESUMEN

A new strain of yellow-green algae (Xanthophyceae, Heterokonta), tentatively named Heterococcus sp. DN1 (UTEX accession number UTEX ZZ885), was discovered among snow fields in the Rocky Mountains. Axenic cultures of H. sp. DN1 were isolated and their cellular morphology, growth, and composition of lipids were characterized. H. sp. DN1 was found to grow at temperatures approaching freezing to accumulate large intracellular stores of lipids. H. sp. DN1 produces the highest quantity of lipids when grown undisturbed with high light in low temperatures. Of particular interest was the accumulation of eicosapentaenoic acid, known to be important for human nutrition, and palmitoleic acid, known to improve biodiesel feedstock properties.


Asunto(s)
Altitud , Frío , Lípidos/biosíntesis , Estramenopilos/aislamiento & purificación , Estramenopilos/metabolismo , Colorado , Lípidos/química
15.
Genetics ; 189(4): 1249-60, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21940683

RESUMEN

Mutations at the APM1 and APM2 loci in the green alga Chlamydomonas reinhardtii confer resistance to phosphorothioamidate and dinitroaniline herbicides. Genetic interactions between apm1 and apm2 mutations suggest an interaction between the gene products. We identified the APM1 and APM2 genes using a map-based cloning strategy. Genomic DNA fragments containing only the DNJ1 gene encoding a type I Hsp40 protein rescue apm1 mutant phenotypes, conferring sensitivity to the herbicides and rescuing a temperature-sensitive growth defect. Lesions at five apm1 alleles include missense mutations and nucleotide insertions and deletions that result in altered proteins or very low levels of gene expression. The HSP70A gene, encoding a cytosolic Hsp70 protein known to interact with Hsp40 proteins, maps near the APM2 locus. Missense mutations found in three apm2 alleles predict altered Hsp70 proteins. Genomic fragments containing the HSP70A gene rescue apm2 mutant phenotypes. The results suggest that a client of the Hsp70-Hsp40 chaperone complex may function to increase microtubule dynamics in Chlamydomonas cells. Failure of the chaperone system to recognize or fold the client protein(s) results in increased microtubule stability and resistance to the microtubule-destabilizing effect of the herbicides. The lack of redundancy of genes encoding cytosolic Hsp70 and Hsp40 type I proteins in Chlamydomonas makes it a uniquely valuable system for genetic analysis of the function of the Hsp70 chaperone complex.


Asunto(s)
Chlamydomonas/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Microtúbulos/metabolismo , Secuencia de Aminoácidos , Southern Blotting , Chlamydomonas/genética , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Datos de Secuencia Molecular , Mutación Missense , Reacción en Cadena de la Polimerasa
16.
Mol Biol Cell ; 19(1): 262-73, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17942595

RESUMEN

Mutations in the UNI2 locus in Chlamydomonas reinhardtii result in a "uniflagellar" phenotype in which flagellar assembly occurs preferentially from the older basal body and ultrastructural defects reside in the transition zones. The UNI2 gene encodes a protein of 134 kDa that shares 20.5% homology with a human protein. Immunofluorescence microscopy localized the protein on both basal bodies and probasal bodies. The protein is present as at least two molecular-weight variants that can be converted to a single form with phosphatase treatment. Synthesis of Uni2 protein is induced during cell division cycles; accumulation of the phosphorylated form coincides with assembly of transition zones and flagella at the end of the division cycle. Using the Uni2 protein as a cell cycle marker of basal bodies, we observed migration of basal bodies before flagellar resorption in some cells, indicating that flagellar resorption is not required for mitotic progression. We observed the sequential assembly of new probasal bodies beginning at prophase. The uni2 mutants may be defective in the pathways leading to flagellar assembly and to basal body maturation.


Asunto(s)
Ciclo Celular , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Biomarcadores/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestructura , Flagelos/ultraestructura , Genes Protozoarios , Genoma , Modelos Biológicos , Mutación/genética , Fosforilación , Transporte de Proteínas , Homología de Secuencia de Ácido Nucleico , Vertebrados/genética
17.
Plant Cell ; 19(11): 3491-503, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18024571

RESUMEN

Positive signaling by nitrate in its assimilation pathway has been studied in Chlamydomonas reinhardtii. Among >34,000 lines generated by plasmid insertion, 10 mutants were unable to activate nitrate reductase (NIA1) gene expression and had a Nit(-) (no growth in nitrate) phenotype. Each of these 10 lines was mutated in the nitrate assimilation-specific regulatory gene NIT2. The complete NIT2 cDNA sequence was obtained, and its deduced amino acid sequence revealed GAF, Gln-rich, Leu zipper, and RWP-RK domains typical of transcription factors and transcriptional coactivators associated with signaling pathways. The predicted Nit2 protein sequence is structurally related to the Nin (for nodule inception) proteins from plants but not to NirA/Nit4/Yna proteins from fungi and yeast. NIT2 expression is negatively regulated by ammonium and is optimal in N-free medium with no need for the presence of nitrate. However, intracellular nitrate is required to allow Nit2 to activate the NIA1 promoter activity. Nit2 protein was expressed in Escherichia coli and shown to bind to specific sequences at the NIA1 gene promoter. Our data indicate that NIT2 is a central regulatory gene required for nitrate signaling on the Chlamydomonas NIA1 gene promoter and that intracellular nitrate is needed for NIT2 function and to modulate NIA1 transcript levels.


Asunto(s)
Chlamydomonas/genética , Genes Reguladores , Nitratos/metabolismo , Transducción de Señal , Proteínas Algáceas/química , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Huella de ADN , ADN de Algas/metabolismo , Desoxirribonucleasa I/metabolismo , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Mutagénesis Insercional , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , ARN de Algas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN
18.
Science ; 318(5848): 245-50, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17932292

RESUMEN

Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.


Asunto(s)
Proteínas Algáceas/genética , Proteínas Algáceas/fisiología , Evolución Biológica , Chlamydomonas reinhardtii/genética , Genoma , Animales , Chlamydomonas reinhardtii/fisiología , Cloroplastos/metabolismo , Biología Computacional , ADN de Algas/genética , Flagelos/metabolismo , Genes , Genómica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/fisiología , Datos de Secuencia Molecular , Familia de Multigenes , Fotosíntesis/genética , Filogenia , Plantas/genética , Proteoma , Análisis de Secuencia de ADN
19.
Eukaryot Cell ; 3(5): 1307-19, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15470259

RESUMEN

Chlamydomonas reinhardtii controls flagellar assembly such that flagella are of an equal and predetermined length. Previous studies demonstrated that lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), induced flagellar elongation, suggesting that a lithium-sensitive signal transduction pathway regulated flagellar length (S. Nakamura, H. Takino, and M. K. Kojima, Cell Struct. Funct. 12:369-374, 1987). Here, we demonstrate that lithium treatment depletes the pool of flagellar proteins from the cell body and that the heterotrimeric kinesin Fla10p accumulates in flagella. We identify GSK3 in Chlamydomonas and demonstrate that its kinase activity is inhibited by lithium in vitro. The tyrosine-phosphorylated, active form of GSK3 was enriched in flagella and GSK3 associated with the axoneme in a phosphorylation-dependent manner. The level of active GSK3 correlated with flagellar length; early during flagellar regeneration, active GSK3 increased over basal levels. This increase in active GSK3 was rapidly lost within 30 min of regeneration as the level of active GSK3 decreased relative to the predeflagellation level. Taken together, these results suggest a possible role for GSK3 in regulating the assembly and length of flagella.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/crecimiento & desarrollo , Flagelos/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Algáceas , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Chlamydomonas reinhardtii/genética , Clonación Molecular , ADN Protozoario/genética , Inhibidores Enzimáticos/farmacología , Flagelos/efectos de los fármacos , Flagelos/fisiología , Genes Protozoarios , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Cloruro de Litio/farmacología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Fenotipo , Fosforilación , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Homología de Secuencia de Aminoácido , Tirosina/metabolismo
20.
Cell Motil Cytoskeleton ; 51(4): 197-212, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11977094

RESUMEN

Chlamydomonas flagella can undergo a calcium-dependent conversion between an asymmetric ciliary waveform and a symmetric flagellar waveform. Mutations at three MBO loci abolish the predominant ciliary waveform and result in cells that move backward only with the flagellar waveform. We have cloned and characterized the MBO2 gene. It encodes a novel protein with extensive alpha-helical coiled-coils and two leucine zippers. Sequences highly similar to MBO2p were found in a variety of organisms with cilia and flagella, suggesting that the MBO2 gene function may be conserved in many diverse taxa. Antibodies to MBO2p recognized an axonemal protein of 110 kDa, which appeared to be tightly associated with doublet microtubules. The protein was present in flagella of a variety of paralyzed flagellar mutants that lacked different axonemal structures, indicating that MBO2p is a component of a previously uncharacterized flagellar protein complex. In contrast to the earlier suggestion that the MBO2 gene may encode a component of an intramicrotubular beak-like structure present only proximally in flagella, we localized an epitope-tagged MBO2p along the entire length of the flagella. Moreover, the insertion of a hemagglutinin (HA) epitope in the conserved C-terminal domain of MBO2p reduced the swimming velocity of cells transformed with the epitope-tagged gene. These results indicate that MBO2p may play a role both in the assembly of the beak-like structure and the regulation of the force-generation machinery during the ciliary beat.


Asunto(s)
Chlamydomonas/genética , Flagelos/fisiología , Proteínas de Microtúbulos/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Calcio/metabolismo , Chlamydomonas/fisiología , Chlamydomonas/ultraestructura , ADN Protozoario , Flagelos/ultraestructura , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Proteínas de Microtúbulos/fisiología , Datos de Secuencia Molecular , Proteínas Protozoarias/fisiología , ARN Mensajero , ARN Protozoario , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA