Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Lett ; 46(3): 592-595, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33528416

RESUMEN

Mechanical loss of dielectric mirror coatings sets fundamental limits for both gravitational wave detectors and cavity-stabilized optical local oscillators for atomic clocks. Two approaches are used to determine the mechanical loss: ringdown measurements of the coating quality factor and direct measurement of the coating thermal noise. Here we report a systematic study of the mirror thermal noise at 4, 16, 124, and 300 K by operating reference cavities at these temperatures. The directly measured thermal noise is used to extract the mechanical loss for SiO2/Ta2O5 coatings, which are compared with previously reported values.

2.
Phys Rev Lett ; 123(17): 173201, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31702265

RESUMEN

We report on the first timescale based entirely on optical technology. Existing timescales, including those incorporating optical frequency standards, rely exclusively on microwave local oscillators owing to the lack of an optical oscillator with the required frequency predictability and stability for reliable steering. We combine a cryogenic silicon cavity exhibiting improved long-term stability and an accurate ^{87}Sr lattice clock to form a timescale that outperforms them all. Our timescale accumulates an estimated time error of only 48±94 ps over 34 days of operation. Our analysis indicates that this timescale is capable of reaching a stability below 1×10^{-17} after a few months of averaging, making timekeeping at the 10^{-18} level a realistic prospect.

3.
Opt Lett ; 40(9): 2112-5, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25927798

RESUMEN

We present a laser system based on a 48 cm long optical glass resonator. The large size requires a sophisticated thermal control and optimized mounting design. A self-balancing mounting was essential to reliably reach sensitivities to acceleration of below Δν/ν<2×10(-10)/g in all directions. Furthermore, fiber noise cancellations from a common reference point near the laser diode to the cavity mirror and to additional user points (Sr clock and frequency comb) are implemented. Through comparison with other cavity-stabilized lasers and with a strontium lattice clock, instability of below 1×10(-16) at averaging times from 1 to 1000 s is revealed.

4.
Opt Lett ; 39(17): 5102-5, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25166084

RESUMEN

Cryogenic single-crystal optical cavities have the potential to provide high dimensional stability. We have investigated the long-term performance of an ultrastable laser system that is stabilized to a single-crystal silicon cavity operated at 124 K. Utilizing a frequency comb, the laser is compared to a hydrogen maser that is referenced to a primary caesium fountain standard and to the 87Sr optical lattice clock at Physikalisch-Technische Bundesanstalt (PTB). With fractional frequency instabilities of σ(y)(τ)≤2×10(-16) for averaging times of τ=60 s to 1000 s and σ(y)(1 d)≤2×10(-15) the stability of this laser, without any aid from an atomic reference, surpasses the best known microwave standards for short averaging times and is competitive with the best known hydrogen masers for longer times of 1 day. The comparison of modeled thermal response of the cavity with measured data indicates an average fractional frequency drift below 5×10(-19)/s, which we do not expect to be a fundamental limit.

5.
Phys Rev Lett ; 110(23): 230801, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25167479

RESUMEN

We have measured the frequency of the extremely narrow 1S-2S two-photon transition in atomic hydrogen using a remote cesium fountain clock with the help of a 920 km stabilized optical fiber. With an improved detection method we obtain f(1S-2S)=2466 061 413 187 018 (11) Hz with a relative uncertainty of 4.5×10(-15), confirming our previous measurement obtained with a local cesium clock [C. G. Parthey et al., Phys. Rev. Lett. 107, 203001 (2011)]. Combining these results with older measurements, we constrain the linear combinations of Lorentz boost symmetry violation parameters c((TX))=(3.1±1.9)×10(-11) and 0.92c((TY))+0.40c((TZ))=(2.6±5.3)×10(-11) in the standard model extension framework [D. Colladay, V. A. Kostelecký, Phys. Rev. D. 58, 116002 (1998)].

6.
Rev Sci Instrum ; 85(11): 113107, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430098

RESUMEN

We present a compact and robust transportable ultra-stable laser system with minimum fractional frequency instability of 1 × 10(-15) at integration times between 1 and 10 s. The system was conceived as a prototype of a subsystem of a microwave-optical local oscillator to be used on the satellite mission Space-Time Explorer and QUantum Equivalence Principle Space Test (STE-QUEST) (http://sci.esa.int/ste-quest/). It was therefore designed to be compact, to sustain accelerations occurring during rocket launch, to exhibit low vibration sensitivity, and to reach a low frequency instability. Overall dimensions of the optical system are 40 cm × 20 cm × 30 cm. The acceleration sensitivities of the optical frequency in the three directions were measured to be 1.7 × 10(-11)/g, 8.0 × 10(-11)/g, and 3.9 × 10(-10)/g, and the absolute frequency instability was determined via a three-cornered hat measurement. Two additional cavity-stabilized lasers were used for this purpose, one of which had an instability σy < 4 × 10(-16) at 1 s integration time. The design is also appropriate and useful for terrestrial applications.

7.
Artículo en Inglés | MEDLINE | ID: mdl-20040443

RESUMEN

We have explored the performance of 2 "dark fibers" of a commercial telecommunication fiber link for a remote comparison of optical clocks. These fibers establish a network in Germany that will eventually link optical frequency standards at PTB with those at the Institute of Quantum Optics (IQ) at the Leibniz University of Hanover, and the Max Planck Institutes in Erlangen (MPL) and Garching (MPQ). We demonstrate for the first time that within several minutes a phase coherent comparison of clock lasers at the few 10(-15) level can also be accomplished when the lasers are more than 100 km apart. Based on the performance of the fiber link to the IQ, we estimate the expected stability for the link from PTB to MPQ via MPL that bridges a distance of approximately 900 km.


Asunto(s)
Fibras Ópticas , Telecomunicaciones/instrumentación , Factores de Tiempo , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Microondas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
8.
Phys Rev Lett ; 93(7): 070503, 2004 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-15324220

RESUMEN

The interference of two single photons impinging on a beam splitter is measured in a time-resolved manner. Using long photons of different frequencies emitted from an atom-cavity system, a quantum beat with a visibility close to 100% is observed in the correlation between the photodetections at the output ports of the beam splitter. The time dependence of the beat amplitude reflects the coherence properties of the photons. Most remarkably, simultaneous photodetections are never observed, so that a temporal filter allows one to obtain perfect two-photon coalescence even for nonperfect photons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA