Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(5): e1012071, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814981

RESUMEN

Many social interactions happen indirectly via modifications of the environment, e.g. through the secretion of functional compounds or the depletion of renewable resources. Here, we derive the selection gradient on a quantitative trait affecting dynamical environmental variables that feed back on reproduction and survival in a finite patch-structured population subject to isolation by distance. Our analysis shows that the selection gradient depends on how a focal individual influences the fitness of all future individuals in the population through modifications of the environmental variables they experience, weighted by the neutral relatedness between recipients and the focal. The evolutionarily relevant trait-driven environmental modifications are formalized as the extended phenotypic effects of an individual, quantifying how a trait change in an individual in the present affects the environmental variables in all patches at all future times. When the trait affects reproduction and survival through a payoff function, the selection gradient can be expressed in terms of extended phenotypic effects weighted by scaled relatedness. We show how to compute extended phenotypic effects, relatedness, and scaled relatedness using Fourier analysis, which allow us to investigate a broad class of environmentally mediated social interactions in a tractable way. We use our approach to study the evolution of a trait controlling the costly production of some lasting commons (e.g. a common-pool resource or a toxic compound) that can diffuse in space and persist in time. We show that indiscriminate posthumous spite readily evolves in this scenario. More generally, whether selection favours environmentally mediated altruism or spite is determined by the spatial correlation between an individual's lineage and the commons originating from its patch. The sign of this correlation depends on interactions between dispersal patterns and the commons' renewal dynamics. More broadly, we suggest that selection can favour a wide range of social behaviours when these have carry-over effects in space and time.


Asunto(s)
Evolución Biológica , Interacción Social , Biología Computacional , Fenotipo , Animales , Ambiente , Humanos
2.
Am Nat ; 203(2): 292-304, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306286

RESUMEN

AbstractBiological adaptation is the outcome of allele-frequency change by natural selection. At the same time, populations are usually class structured as individuals occupy different states, such as age, sex, or stage. This is known to result in the differential transmission of alleles through nonheritable fitness differences called class transmission, which also affects allele-frequency change even in the absence of selection. How does one then isolate allele-frequency change due to selection from that due to class transmission? We decompose one-generational allele-frequency change in terms of effects of selection and class transmission and show how reproductive values can be used to reach a decomposition between any two distant generations of the evolutionary process. This provides a missing relationship between multigenerational allele-frequency change and the operation of selection. It also allows a measure of fitness to be defined summarizing the effect of selection in a multigenerational evolutionary process, which connects asymptotically to invasion fitness.


Asunto(s)
Modelos Genéticos , Selección Genética , Humanos , Frecuencia de los Genes , Reproducción , Evolución Biológica
3.
Am Nat ; 203(1): E19-E34, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38207145

RESUMEN

AbstractIn patch- or habitat-structured populations, different processes can favor adaptive polymorphism at different scales. While spatial heterogeneity can generate spatially disruptive selection favoring variation between patches, local competition can lead to locally disruptive selection promoting variation within patches. So far, almost all theory has studied these two processes in isolation. Here, we use mathematical modeling to investigate how resource variation within and between habitats influences the evolution of variation in a consumer population where individuals compete in finite patches connected by dispersal. We find that locally and spatially disruptive selection typically act in concert, favoring polymorphism under a wider range of conditions than when in isolation. But when patches are small and dispersal between them is low, kin competition inhibits the emergence of polymorphism, especially when the latter is driven by local competition for resources. We further use our model to clarify what comparisons between trait and neutral genetic differentiation (QST/FST comparisons) can tell about the nature of selection. Overall, our results help us understand the interaction between two major drivers of polymorphism: locally and spatially disruptive selection, and how this interaction is modulated by the unavoidable effects of kin selection under limited dispersal.


Asunto(s)
Ecosistema , Modelos Teóricos , Humanos , Dinámica Poblacional , Flujo Genético , Polimorfismo Genético , Evolución Biológica , Selección Genética
4.
J Theor Biol ; 573: 111598, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37598761

RESUMEN

The cost of germline maintenance gives rise to a trade-off between lowering the deleterious mutation rate and investing in life history functions. Therefore, life history and the mutation rate coevolve, but this coevolution is not well understood. We develop a mathematical model to analyse the evolution of resource allocation traits, which simultaneously affect life history and the deleterious mutation rate. First, we show that the invasion fitness of such resource allocation traits can be approximated by the basic reproductive number of the least-loaded class; the expected lifetime production of offspring without deleterious mutations born to individuals without deleterious mutations. Second, we apply the model to investigate (i) the coevolution of reproductive effort and germline maintenance and (ii) the coevolution of age-at-maturity and germline maintenance. This analysis provides two resource allocation predictions when exposure to environmental mutagens is higher. First, selection favours higher allocation to germline maintenance, even if it comes at the expense of life history functions, and leads to a shift in allocation towards reproduction rather than survival. Second, life histories tend to be faster, characterised by individuals with shorter lifespans and smaller body sizes at maturity. Our results suggest that mutation accumulation via the cost of germline maintenance can be a major force shaping life-history traits.


Asunto(s)
Rasgos de la Historia de Vida , Tasa de Mutación , Humanos , Número Básico de Reproducción , Tamaño Corporal , Acumulación de Mutaciones
5.
Proc Natl Acad Sci U S A ; 117(46): 28894-28898, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139540

RESUMEN

The genetic evolution of altruism (i.e., a behavior resulting in a net reduction of the survival and/or reproduction of an actor to benefit a recipient) once perplexed biologists because it seemed paradoxical in a Darwinian world. More than half a century ago, W. D. Hamilton explained that when interacting individuals are genetically related, alleles for altruism can be favored by selection because they are carried by individuals more likely to interact with other individuals carrying the alleles for altruism than random individuals in the population ("kin selection"). In recent decades, a substantial number of supposedly alternative pathways to altruism have been published, leading to controversies surrounding explanations for the evolution of altruism. Here, we systematically review the 200 most impactful papers published on the evolution of altruism and identify 43 evolutionary models in which altruism evolves and where the authors attribute the evolution of altruism to a pathway other than kin selection and/or deny the role of relatedness. An analysis of these models reveals that in every case the life cycle assumptions entail local reproduction and local interactions, thereby leading to interacting individuals being genetically related. Thus, contrary to the authors' claims, Hamilton's relatedness drives the evolution to altruism in their models. The fact that several decades of investigating the evolution to altruism have resulted in the systematic and unwitting rediscovery of the same mechanism is testament to the fundamental importance of positive relatedness between actor and recipient for explaining the evolution of altruism.


Asunto(s)
Altruismo , Evolución Biológica , Conducta Cooperativa , Animales , Humanos , Modelos Genéticos , Selección Genética/genética
6.
J Theor Biol ; 555: 111282, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36179799

RESUMEN

This paper formalizes selection on a quantitative trait affecting the evolution of behavior (or development) rules through which individuals act and react with their surroundings. Combining Hamilton's marginal rule for selection on scalar traits and concepts from optimal control theory, a necessary first-order condition for the evolutionary stability of the trait in a group-structured population is derived. The model, which is of intermediate level of complexity, fills a gap between the formalization of selection on evolving traits that are directly conceived as actions (no phenotypic plasticity) and selection on evolving traits that are conceived as strategies or function valued actions (complete phenotypic plasticity). By conceptualizing individuals as open deterministic dynamical systems expressing incomplete phenotypic plasticity, the model captures selection on a large class of phenotypic expression mechanisms, including developmental pathways and learning under life-history trade-offs. As an illustration of the results, a first-order condition for the evolutionary stability of behavior response rules from the social evolution literature is re-derived, strengthened, and generalized. All results of the paper also generalize directly to selection on multidimensional quantitative traits affecting behavior rule evolution, thereby covering neural and gene network evolution.


Asunto(s)
Evolución Biológica , Selección Genética , Humanos , Altruismo , Conducta Social , Conducta Cooperativa
7.
Theor Popul Biol ; 142: 12-35, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34530032

RESUMEN

We analyze the evolution of a multidimensional quantitative trait in a class-structured focal species interacting with other species in a wider metacommunity. The evolutionary dynamics in the focal species as well as the ecological dynamics of the whole metacommunity is described as a continuous-time process with birth, physiological development, dispersal, and death given as rates that can depend on the state of the whole metacommunity. This can accommodate complex local community and global metacommunity environmental feedbacks owing to inter- and intra-specific interactions, as well as local environmental stochastic fluctuations. For the focal species, we derive a fitness measure for a mutant allele affecting class-specific trait expression. Using classical results from geometric singular perturbation theory, we provide a detailed proof that if the effect of the mutation on phenotypic expression is small ("weak selection"), the large system of dynamical equations needed to describe selection on the mutant allele in the metacommunity can be reduced to a single ordinary differential equation on the arithmetic mean mutant allele frequency that is of constant sign. This invariance on allele frequency entails the mutant either dies out or will out-compete the ancestral resident (or wild) type. Moreover, the directional selection coefficient driving arithmetic mean allele frequency can be expressed as an inclusive fitness effect calculated from the resident metacommunity alone, and depends, as expected, on individual fitness differentials, relatedness, and reproductive values. This formalizes the Darwinian process of gradual evolution driven by random mutation and natural selection in spatially and physiologically class-structured metacommunities.


Asunto(s)
Evolución Biológica , Modelos Genéticos , Fenotipo , Dinámica Poblacional , Selección Genética
8.
J Theor Biol ; 526: 110602, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33508326

RESUMEN

Most traits expressed by organisms, such as gene expression profiles, developmental trajectories, behavioural sequences and reaction norms are function-valued traits (colloquially "phenotypically plastic traits"), since they vary across an individual's age and in response to various internal and/or external factors (state variables). Furthermore, most organisms live in populations subject to limited genetic mixing and are thus likely to interact with their relatives. We here formalise selection on genetically determined function-valued traits of individuals interacting in a group-structured population, by deriving the marginal version of Hamilton's rule for function-valued traits. This rule simultaneously gives a condition for the invasion of an initially rare mutant function-valued trait and its ultimate fixation in the population (invasion thus implies substitution). Hamilton's rule thus underlies the gradual evolution of function-valued traits and gives rise to necessary first-order conditions for their uninvadability (evolutionary stability). We develop a novel analysis using optimal control theory and differential game theory, to simultaneously characterise and compare the first-order conditions of (i) open-loop traits - functions of time (or age) only, and (ii) closed-loop (state-feedback) traits - functions of both time and state variables. We show that closed-loop traits can be represented as the simpler open-loop traits when individuals do not interact or when they interact with clonal relatives. Our analysis delineates the role of state-dependence and interdependence between individuals for trait evolution, which has implications to both life-history theory and social evolution.


Asunto(s)
Evolución Biológica , Selección Genética , Retroalimentación , Teoría del Juego , Humanos , Fenotipo
9.
Evol Anthropol ; 30(4): 280-293, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34085349

RESUMEN

To resolve the major controversy about why prosocial behaviors persist in large-scale human societies, we propose that two questions need to be answered. First, how do social interactions in small-scale and large-scale societies differ? By reviewing the exchange and collective-action dilemmas in both small-scale and large-scale societies, we show they are not different. Second, are individual decision-making mechanisms driven by self-interest? We extract from the literature three types of individual decision-making mechanism, which differ in their social influence and sensitivity to self-interest, to conclude that humans interacting with non-relatives are largely driven by self-interest. We then ask: what was the key mechanism that allowed prosocial behaviors to continue as societies grew? We show the key role played by new social interaction mechanisms-change in the rules of exchange and collective-action dilemmas-devised by the interacting individuals, which allow for self-interested individuals to remain prosocial as societies grow.


Asunto(s)
Conducta Cooperativa , Relaciones Interpersonales , Evolución Social , Antropología Cultural , Humanos
10.
Am Nat ; 195(4): 717-732, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32216664

RESUMEN

Adaptation is often described in behavioral ecology as individuals maximizing their inclusive fitness. Under what conditions does this hold, and how does this relate to the gene-centered perspective of adaptation? We unify and extend the literature on these questions to class-structured populations. We demonstrate that the maximization (in the best-response sense) of class-specific inclusive fitness obtains in uninvadable population states (meaning that all deviating mutants become extinct). This defines a genuine actor-centered perspective on adaptation. But this inclusive fitness is assigned to all bearers of a mutant allele in a given class and depends on distributions of demographic and genetic contexts. These distributions, in turn, usually depend on events in previous generations and are thus not under individual control. This prevents, in general, envisioning individuals themselves as autonomous fitness maximizers, each with its own inclusive fitness. For weak selection, however, the dependence on earlier events can be neglected. We then show that each individual in each class appears to maximize its own inclusive fitness when all other individuals exhibit inclusive fitness-maximizing behavior. This defines a genuine individual-centered perspective of adaptation and justifies formally, as a first-order approximation, the long-heralded view of individuals appearing to maximize their own inclusive fitness.


Asunto(s)
Adaptación Biológica/genética , Aptitud Genética , Modelos Genéticos , Evolución Biológica , Genética de Población , Selección Genética
11.
Theor Popul Biol ; 134: 36-52, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32387787

RESUMEN

Long-term evolution of quantitative traits is classically and usefully described as the directional change in phenotype due to the recurrent fixation of new mutations. A formal justification for such continual evolution ultimately relies on the "invasion implies substitution"-principle. Here, whenever a mutant allele causing a small phenotypic change can successfully invade a population, the ancestral (or wild-type) allele will be replaced, whereby fostering gradual phenotypic change if the process is repeated. It has been argued that this principle holds in a broad range of situations, including spatially and demographically structured populations experiencing frequency- and density-dependent selection under demographic and environmental fluctuations. However, prior studies have not been able to account for all aspects of population structure, leaving unsettled the conditions under which the "invasion implies substitution"-principle really holds. In this paper, we start by laying out a program to explore and clarify the generality of the "invasion implies substitution"-principle. Particular focus is given on finding an explicit and functionally constant representation of the selection gradient on a quantitative trait. Using geometric singular perturbation methods, we then show that the "invasion implies substitution"-principle generalizes to well-mixed and scalar-valued polymorphic multispecies ecological communities that are structured into finitely many demographic (or physiological) classes. The selection gradient is shown to be constant over the evolutionary timescale and that it depends only on the resident phenotype, individual growth-rates, population steady states and reproductive values, all of which are calculated from the resident dynamics. Our work contributes to the theoretical foundations of evolutionary ecology.


Asunto(s)
Evolución Biológica , Ecología , Biota , Modelos Genéticos , Fenotipo , Dinámica Poblacional , Selección Genética
12.
J Theor Biol ; 507: 110449, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-32814071

RESUMEN

We derive how directional and disruptive selection operate on scalar traits in a heterogeneous group-structured population for a general class of models. In particular, we assume that each group in the population can be in one of a finite number of states, where states can affect group size and/or other environmental variables, at a given time. Using up to second-order perturbation expansions of the invasion fitness of a mutant allele, we derive expressions for the directional and disruptive selection coefficients, which are sufficient to classify the singular strategies of adaptive dynamics. These expressions include first- and second-order perturbations of individual fitness (expected number of settled offspring produced by an individual, possibly including self through survival); the first-order perturbation of the stationary distribution of mutants (derived here explicitly for the first time); the first-order perturbation of pairwise relatedness; and reproductive values, pairwise and three-way relatedness, and stationary distribution of mutants, each evaluated under neutrality. We introduce the concept of individual k-fitness (defined as the expected number of settled offspring of an individual for which k-1 randomly chosen neighbors are lineage members) and show its usefulness for calculating relatedness and its perturbation. We then demonstrate that the directional and disruptive selection coefficients can be expressed in terms individual k-fitnesses with k=1,2,3 only. This representation has two important benefits. First, it allows for a significant reduction in the dimensions of the system of equations describing the mutant dynamics that needs to be solved to evaluate explicitly the two selection coefficients. Second, it leads to a biologically meaningful interpretation of their components. As an application of our methodology, we analyze directional and disruptive selection in a lottery model with either hard or soft selection and show that many previous results about selection in group-structured populations can be reproduced as special cases of our model.


Asunto(s)
Reproducción , Selección Genética , Alelos , Evolución Biológica , Modelos Genéticos , Fenotipo
13.
J Theor Biol ; 486: 110087, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31758967

RESUMEN

Understanding macroevolutionary patterns is central to evolutionary biology. This involves the process of divergence within a species, which starts at the microevolutionary level, for instance, when two subpopulations evolve towards different phenotypic optima. The speed at which these optima are reached is controlled by the degree of stabilising selection, which pushes the mean trait towards different optima in the different subpopulations, and ongoing migration that pulls the mean phenotype away from that optimum. Traditionally, macro phenotypic evolution is modelled by directional selection processes, but these models usually ignore the role of migration within species. Here, our goal is to reconcile the processes of micro and macroevolution by modelling migration as part of the speciation process. More precisely, we introduce an Ornstein-Uhlenbeck (OU) model where migration happens between two subpopulations within a branch of a phylogeny and this migration decreases over time as it happens during speciation. We then use this model to study the evolution of trait means along a phylogeny, as well as the way phenotypic disparity between species changes with successive epochs. We show that ignoring the effect of migration in sampled time-series data biases significantly the estimation of the selective forces acting upon it. We also show that migration decreases the expected phenotypic disparity between species and we analyse the effect of migration in the particular case of niche filling. We further introduce a method to jointly estimate selection and migration from time-series data. Our model extends traditional quantitative genetics results of selection and migration from a microevolutionary time frame to multiple speciation events at a macroevolutionary scale. Our results further support that not accounting for gene flow has important consequences in inferences at both the micro and macroevolutionary scale.


Asunto(s)
Evolución Biológica , Fenotipo , Filogenia
14.
Theor Popul Biol ; 129: 4-8, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30593784

RESUMEN

This article consists of commentaries on a selected group of papers of Marc Feldman published in Theoretical Population Biology from 1970 to the present. The papers describe a diverse set of population-genetic models, covering topics such as cultural evolution, social evolution, and the evolution of recombination. The commentaries highlight Marc Feldman's role in providing mathematically rigorous formulations to explore qualitative hypotheses, in many cases generating surprising conclusions.


Asunto(s)
Evolución Cultural , Genética de Población , Publicaciones , Humanos , Modelos Estadísticos , Recombinación Genética , Aprendizaje Social
16.
Am Nat ; 192(6): 664-686, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30444662

RESUMEN

Understanding selection on intra- and interspecific interactions that take place in dispersal-limited communities is a challenge for ecology and evolutionary biology. The problem is that local demographic stochasticity generates eco-evolutionary dynamics that are generally too complicated to make tractable analytical investigations. Here we circumvent this problem by approximating the selection gradient on a quantitative trait that influences local community dynamics, assuming that such dynamics are deterministic with a stable fixed point. The model nonetheless captures unavoidable kin selection effects arising from demographic stochasticity. Our approximation reveals that selection depends on how an individual expressing a trait change influences (1) its own fitness and the fitness of its current relatives and (2) the fitness of its downstream relatives through modifications of local ecological conditions (i.e., through ecological inheritance). Mathematically, the effects of ecological inheritance on selection are captured by dispersal-limited versions of press perturbations of community ecology. We use our approximation to investigate the evolution of helping within species and harming between species when these behaviors influence demography. We find that altruistic helping evolves more readily when intraspecific competition is for material resources rather than for space, because in this case the costs of kin competition tend to be paid by downstream relatives. Similarly, altruistic harming between species evolves when it alleviates downstream relatives from interspecific competition. Beyond these examples, our approximation can help better understand the influence of ecological inheritance on a variety of eco-evolutionary dynamics in metacommunities, from consumer-resource and predator-prey coevolution to selection on mating systems with demographic feedbacks.


Asunto(s)
Evolución Biológica , Biota , Altruismo , Animales , Demografía , Ecosistema , Modelos Teóricos , Dinámica Poblacional , Selección Genética
17.
PLoS Comput Biol ; 13(3): e1005380, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28278153

RESUMEN

Complex cognition and relatively large brains are distributed across various taxa, and many primarily verbal hypotheses exist to explain such diversity. Yet, mathematical approaches formalizing verbal hypotheses would help deepen the understanding of brain and cognition evolution. With this aim, we combine elements of life history and metabolic theories to formulate a metabolically explicit mathematical model for brain life history evolution. We assume that some of the brain's energetic expense is due to production (learning) and maintenance (memory) of energy-extraction skills (or cognitive abilities, knowledge, information, etc.). We also assume that individuals use such skills to extract energy from the environment, and can allocate this energy to grow and maintain the body, including brain and reproductive tissues. The model can be used to ask what fraction of growth energy should be allocated at each age, given natural selection, to growing brain and other tissues under various biological settings. We apply the model to find uninvadable allocation strategies under a baseline setting ("me vs nature"), namely when energy-extraction challenges are environmentally determined and are overcome individually but possibly with maternal help, and use modern-human data to estimate model's parameter values. The resulting uninvadable strategies yield predictions for brain and body mass throughout ontogeny and for the ages at maturity, adulthood, and brain growth arrest. We find that: (1) a me-vs-nature setting is enough to generate adult brain and body mass of ancient human scale and a sequence of childhood, adolescence, and adulthood stages; (2) large brains are favored by intermediately challenging environments, moderately effective skills, and metabolically expensive memory; and (3) adult skill is proportional to brain mass when metabolic costs of memory saturate the brain metabolic rate allocated to skills.


Asunto(s)
Evolución Biológica , Encéfalo/anatomía & histología , Encéfalo/fisiología , Cognición/fisiología , Metabolismo Energético/genética , Modelos Genéticos , Metabolismo Energético/fisiología , Estadios del Ciclo de Vida/genética
18.
Theor Popul Biol ; 116: 33-46, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28711317

RESUMEN

Human evolution depends on the co-evolution between genetically determined behaviors and socially transmitted information. Although vertical transmission of cultural information from parent to offspring is common in hominins, its effects on cumulative cultural evolution are not fully understood. Here, we investigate gene-culture co-evolution in a family-structured population by studying the invasion fitness of a mutant allele that influences a deterministic level of cultural information (e.g., amount of knowledge or skill) to which diploid carriers of the mutant are exposed in subsequent generations. We show that the selection gradient on such a mutant, and the concomitant level of cultural information it generates, can be evaluated analytically under the assumption that the cultural dynamic has a single attractor point, thereby making gene-culture co-evolution in family-structured populations with multigenerational effects mathematically tractable. We apply our result to study how genetically determined phenotypes of individual and social learning co-evolve with the level of adaptive information they generate under vertical transmission. We find that vertical transmission increases adaptive information due to kin selection effects, but when information is transmitted as efficiently between family members as between unrelated individuals, this increase is moderate in diploids. By contrast, we show that the way resource allocation into learning trades off with allocation into reproduction (the "learning-reproduction trade-off") significantly influences levels of adaptive information. We also show that vertical transmission prevents evolutionary branching and may therefore play a qualitative role in gene-culture co-evolutionary dynamics. More generally, our analysis of selection suggests that vertical transmission can significantly increase levels of adaptive information under the biologically plausible condition that information transmission between relatives is more efficient than between unrelated individuals.


Asunto(s)
Evolución Biológica , Características Culturales , Evolución Cultural , Genética Conductual , Aprendizaje , Adaptación Fisiológica , Cultura , Humanos , Modelos Biológicos
19.
Am Nat ; 188(2): 175-95, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27420783

RESUMEN

The evolutionary stability of quantitative traits depends on whether a population can resist invasion by any mutant. While uninvadability is well understood in well-mixed populations, it is much less so in subdivided populations when multiple traits evolve jointly. Here, we investigate whether a spatially subdivided population at a monomorphic equilibrium for multiple traits can withstand invasion by any mutant or is subject to diversifying selection. Our model also explores the correlations among traits arising from diversifying selection and how they depend on relatedness due to limited dispersal. We find that selection tends to favor a positive (negative) correlation between two traits when the selective effects of one trait on relatedness is positively (negatively) correlated to the indirect fitness effects of the other trait. We study the evolution of traits for which this matters: dispersal that decreases relatedness and helping that has positive indirect fitness effects. We find that when dispersal cost is low and the benefits of helping accelerate faster than its costs, selection leads to the coexistence of mobile defectors and sessile helpers. Otherwise, the population evolves to a monomorphic state with intermediate helping and dispersal. Overall, our results highlight the effects of population subdivision for evolutionary stability and correlations among traits.


Asunto(s)
Evolución Biológica , Aptitud Genética , Haploidia , Estadios del Ciclo de Vida , Modelos Genéticos , Mutación , Selección Genética
20.
Proc Biol Sci ; 283(1832)2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27306050

RESUMEN

Cooperation based on mutual investments can occur between unrelated individuals when they are engaged in repeated interactions. Individuals then need to use a conditional strategy to deter their interaction partners from defecting. Responding to defection such that the future payoff of a defector is reduced relative to cooperating with it is called a partner control mechanism. Three main partner control mechanisms are (i) to switch from cooperation to defection when being defected ('positive reciprocity'), (ii) to actively reduce the payoff of a defecting partner ('punishment'), or (iii) to stop interacting and switch partner ('partner switching'). However, such mechanisms to stabilize cooperation are often studied in isolation from each other. In order to better understand the conditions under which each partner control mechanism tends to be favoured by selection, we here analyse by way of individual-based simulations the coevolution between positive reciprocity, punishment, and partner switching. We show that random interactions in an unstructured population and a high number of rounds increase the likelihood that selection favours partner switching. In contrast, interactions localized in small groups (without genetic structure) increase the likelihood that selection favours punishment and/or positive reciprocity. This study thus highlights the importance of comparing different control mechanisms for cooperation under different conditions.


Asunto(s)
Conducta Cooperativa , Relaciones Interpersonales , Castigo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA