Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 135(1): 37-48, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18854153

RESUMEN

Plasmacytoid dendritic cells (PDCs) represent a unique immune cell type specialized in type I interferon (IFN) secretion in response to viral nucleic acids. The molecular control of PDC lineage specification has been poorly understood. We report that basic helix-loop-helix transcription factor (E protein) E2-2/Tcf4 is preferentially expressed in murine and human PDCs. Constitutive or inducible deletion of murine E2-2 blocked the development of PDCs but not of other lineages and abolished IFN response to unmethylated DNA. Moreover, E2-2 haploinsufficiency in mice and in human Pitt-Hopkins syndrome patients was associated with aberrant expression profile and impaired IFN response of the PDC. E2-2 directly activated multiple PDC-enriched genes, including transcription factors involved in PDC development (SpiB, Irf8) and function (Irf7). These results identify E2-2 as a specific transcriptional regulator of the PDC lineage in mice and humans and reveal a key function of E proteins in the innate immune system.


Asunto(s)
Células Dendríticas/inmunología , Proteínas del Tejido Nervioso/inmunología , Factores de Transcripción TCF/inmunología , Adolescente , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Niño , Preescolar , Proteínas de Unión al ADN , Células Dendríticas/metabolismo , Humanos , Hiperventilación/inmunología , Inmunidad Innata , Discapacidad Intelectual/inmunología , Interferones/inmunología , Ratones , Síndrome , Factor de Transcripción 4 , Proteína 2 Similar al Factor de Transcripción 7 , Factores de Transcripción
2.
Proc Natl Acad Sci U S A ; 117(26): 14926-14935, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32554495

RESUMEN

Molecular ON-switches in which a chemical compound induces protein-protein interactions can allow cellular function to be controlled with small molecules. ON-switches based on clinically applicable compounds and human proteins would greatly facilitate their therapeutic use. Here, we developed an ON-switch system in which the human retinol binding protein 4 (hRBP4) of the lipocalin family interacts with engineered hRBP4 binders in a small molecule-dependent manner. Two different protein scaffolds were engineered to bind to hRBP4 when loaded with the orally available small molecule A1120. The crystal structure of an assembled ON-switch shows that the engineered binder specifically recognizes the conformational changes induced by A1120 in two loop regions of hRBP4. We demonstrate that this conformation-specific ON-switch is highly dependent on the presence of A1120, as demonstrated by an ∼500-fold increase in affinity upon addition of the small molecule drug. Furthermore, the ON-switch successfully regulated the activity of primary human CAR T cells in vitro. We anticipate that lipocalin-based ON-switches have the potential to be broadly applied for the safe pharmacological control of cellular therapeutics.


Asunto(s)
Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Línea Celular , Citocinas/inmunología , Humanos , Lipocalinas/genética , Lipocalinas/inmunología , Conformación Molecular , Piperidinas/química , Piperidinas/farmacología , Receptores Quiméricos de Antígenos/genética , Proteínas Plasmáticas de Unión al Retinol/genética , Proteínas Plasmáticas de Unión al Retinol/inmunología , Linfocitos T/efectos de los fármacos
3.
J Transl Med ; 16(1): 26, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422056

RESUMEN

BACKGROUND: During infection with human cytomegalovirus (HCMV) several viral proteins occur on cell surfaces in high quantity. We thus pursue an HLA-independent approach for immunotherapy of HCMV using chimeric antigen receptors (CARs) and bispecific BiTE® antibody constructs. In this context, HCMV-encoded proteins that mediate viral immune evasion and bind human IgG might represent particularly attractive target antigens. Unlike in observations of similar approaches for HIV and hepatitis B and C viruses, however, HCMV-infected cells develop a striking resistance to cytotoxic effector functions at later stages of the replication cycle. In our study we therefore wanted to test two hypotheses: (1) CAR T cells can efficiently inhibit HCMV replication independently from cytotoxic effector functions, and (2) HCMV can be targeted by CH2-CH3 IgG spacer domains that contain mutations previously reported to prevent exhaustion and to rescue CAR T cell function in vivo. METHODS: Replication of GFP-encoding recombinant HCMV in fibroblasts in the presence and absence of supernatants from T cell co-cultures plus/minus cytokine neutralizing antibodies was analyzed by flow cytometry. CARs with wild type and mutated CH2-CH3 domains were expressed in human T cells by mRNA electroporation, and the function of the CARs was assessed by quantifying T cell cytokine secretion. RESULTS: We confirm and extend previous evidence of antiviral cytokine effects and demonstrate that CAR T cells strongly block HCMV replication in fibroblasts mainly by combined secretion of IFN-γ and TNF. Furthermore, we show that fibroblasts infected with HCMV strains AD169 and Towne starting from day 3 have a high capacity for binding of human IgG1 and also strongly activate T cells expressing a CAR with CH2-CH3 domain. Importantly, we further show that mutations in the CH2-CH3 domain of IgG1 and IgG4, which were previously reported to rescue CAR T cell function by abrogating interaction with endogenous Fc receptors (FcRs), still enable recognition of FcRs encoded by HCMV. CONCLUSIONS: Our findings identify HCMV-encoded FcRs as an attractive additional target for HCMV immunotherapy by CARs and possibly bispecific antibodies. The use of specifically mutated IgG domains that bind to HCMV-FcRs without recognizing endogenous FcRs may supersede screening for novel binders directed against individual HCMV-FcRs.


Asunto(s)
Citomegalovirus/metabolismo , Inmunoglobulina G/química , Inmunoglobulina G/genética , Mutación/genética , Receptores Quiméricos de Antígenos/metabolismo , Receptores Fc/metabolismo , Muerte Celular , Fibroblastos/metabolismo , Fibroblastos/virología , Humanos , Interferón gamma/metabolismo , Masculino , Dominios Proteicos , Linfocitos T/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas del Envoltorio Viral , Replicación Viral
4.
J Immunol ; 188(10): 4810-8, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22504646

RESUMEN

The life span of dendritic cells (DCs) is determined by the balance of pro- and antiapoptotic proteins. In this study, we report that serum-free cultured human monocyte-derived DCs after TLR stimulation with polyinosinic acid-polycytidylic acid or LPS underwent apoptosis, which was correlated with low TNF production. Apoptosis was prevented by the addition of exogenous TNF or by concomitant stimulation with R-848, which strongly amplified endogenous TNF production. Neutralization of TNF confirmed that DC survival was mediated by autocrine TNF induced either by stimulation with R-848 or by ligation of CD40. DCs stimulated by polyinosinic acid-polycytidylic acid or IFN-ß, another known inducer of DC apoptosis, were characterized by high levels and activation of the proapoptotic protein BAK. The ratio of antiapoptotic BCL-2 to BAK correlated best with the survival of activated DCs. Addition of TNF increased this ratio but had little effect on BAX and XIAP. Knockdown experiments using small interfering RNAs confirmed that the survival of activated and also of immature DCs was regulated by BAK and showed that TNF was protective only in the presence of FLIP(L). Together, our data demonstrate that the survival of DCs during differentiation and activation depends on autocrine TNF and that the inhibition of BAK plays an important role in this process.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Comunicación Autocrina/inmunología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Células Dendríticas/citología , Células Dendríticas/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/biosíntesis , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/biosíntesis , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/fisiología , Recuento de Células , Diferenciación Celular/inmunología , Supervivencia Celular/inmunología , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Factor de Necrosis Tumoral alfa/administración & dosificación , Factor de Necrosis Tumoral alfa/biosíntesis , Proteína Destructora del Antagonista Homólogo bcl-2/antagonistas & inhibidores , Proteína Destructora del Antagonista Homólogo bcl-2/biosíntesis
5.
Cell Rep Methods ; 4(4): 100728, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38492569

RESUMEN

Chimeric antigen receptor (CAR) T cells have shown remarkable response rates in hematological malignancies. In contrast, CAR T cell treatment of solid tumors is associated with several challenges, in particular the expression of most tumor-associated antigens at lower levels in vital organs, resulting in on-target/off-tumor toxicities. Thus, innovative approaches to improve the tumor specificity of CAR T cells are urgently needed. Based on the observation that many human solid tumors activate epidermal growth factor receptor (EGFR) on their surface through secretion of EGFR ligands, we developed an engineering strategy for CAR-binding domains specifically directed against the ligand-activated conformation of EGFR. We show, in several experimental systems, that the generated binding domains indeed enable CAR T cells to distinguish between active and inactive EGFR. We anticipate that this engineering concept will be an important step forward to improve the tumor specificity of CAR T cells directed against EGFR-positive solid cancers.


Asunto(s)
Receptores ErbB , Receptores Quiméricos de Antígenos , Linfocitos T , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inmunoterapia Adoptiva/métodos , Animales , Neoplasias/inmunología , Neoplasias/terapia , Línea Celular Tumoral , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Ratones
6.
Sci Signal ; 16(805): eadg2610, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788323

RESUMEN

Lymphocyte activation gene 3 (LAG3) is an inhibitory immune checkpoint receptor that restrains autoimmune and antitumor responses, but its evolutionarily conserved cytoplasmic tail lacks classical inhibitory motifs. Major histocompatibility complex class II (MHC class II) is an established LAG3 ligand, and fibrinogen-like protein 1 (FGL1), lymph node sinusoidal endothelial cell C-type lectin (LSECtin), and Galectin-3 have been proposed as alternative binding partners that play important roles in LAG3 function. Here, we used a fluorescent human T cell reporter system to study the function of LAG3. We found that LAG3 reduced the response to T cell receptor stimulation in the presence of MHC class II molecules to a lesser extent compared with the receptor programmed cell death protein 1. Analysis of deletion mutants demonstrated that the RRFSALE motif in the cytoplasmic tail of LAG3 was necessary and sufficient for LAG3-mediated inhibition. In this system, FGL1, but not LSECtin or Galectin-3, acted as a LAG3 ligand that weakly induced inhibition. LAG3-blocking antibodies attenuated LAG3-mediated inhibition in our reporter cells and enhanced reporter cell activation even in the absence of LAG3 ligands, indicating that they could potentially enhance T cell responses independently of their blocking effect.


Asunto(s)
Antígenos CD , Proteína del Gen 3 de Activación de Linfocitos , Receptores de Antígenos de Linfocitos T , Humanos , Antígenos CD/genética , Antígenos CD/metabolismo , Fibrinógeno , Galectina 3 , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Ligandos , Receptores de Antígenos de Linfocitos T/genética , Receptores Inmunológicos
7.
Sci Rep ; 13(1): 23024, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38155191

RESUMEN

The majority of approved CAR T cell products are based on the FMC63-scFv directed against CD19. Surprisingly, although antigen binding affinity is a major determinant for CAR function, the affinity of the benchmark FMC63-scFv has not been unambiguously determined. That is, a wide range of affinities have been reported in literature, differing by more than 100-fold. Using a range of techniques, we demonstrate that suboptimal experimental designs can cause artefacts that lead to over- or underestimation of the affinity. To minimize these artefacts, we performed SPR with strictly monomeric and correctly folded soluble CD19, yielding an FMC63-scFv affinity of 2-6 nM. Together, apart from analyzing the FMC63-scFv affinity under optimized conditions, we also provide potential explanations for the wide range of published affinities. We expect that this study will be highly valuable for interpretations of CAR affinity-function relationships, as well as for the design of future CAR T cell generations.


Asunto(s)
Inmunoterapia Adoptiva , Linfocitos T , Inmunoterapia Adoptiva/métodos , Antígenos CD19
8.
Nat Commun ; 14(1): 7804, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016944

RESUMEN

Interactions of membrane-resident proteins are important targets for therapeutic interventions but most methods to study them are either costly, laborious or fail to reflect the physiologic interaction of membrane resident proteins in trans. Here we describe highly sensitive cellular biosensors as a tool to study receptor-ligand pairs. They consist of fluorescent reporter cells that express chimeric receptors harboring ectodomains of cell surface molecules and intracellular signaling domains. We show that a broad range of molecules can be integrated into this platform and we demonstrate its applicability to highly relevant research areas, including the characterization of immune checkpoints and the probing of cells for the presence of receptors or ligands. The platform is suitable to evaluate the interactions of viral proteins with host receptors and to test for neutralization capability of drugs or biological samples. Our results indicate that cellular biosensors have broad utility as a tool to study protein-interactions.


Asunto(s)
Técnicas Biosensibles , Transducción de Señal , Ligandos , Membrana Celular/metabolismo , Unión Proteica , Proteínas de la Membrana/metabolismo
9.
Methods Cell Biol ; 167: 133-147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35152991

RESUMEN

Engineered chimeric antigen receptor T cells (CAR T cells) have emerged as a promising immunotherapy for cancer and have proven to be effective for B cell malignancies. Currently, great efforts are undertaken to expand the application of CAR T cells to other cancer entities, to increase the efficacy of CAR T cell-mediated killing of cancer cells and to reduce possible side effects of CAR T cell therapy. This creates a need for preclinical models to test the many emerging novel CAR designs. Traditionally, mouse xenograft models are applied to investigate the efficacy of CAR T cells in vivo. Here, we describe a complementing xenograft protocol for testing CAR T cells against human leukemia cells in zebrafish embryos. The embryonic zebrafish xenograft promises to be a fast and cost-efficient model and particularly offers live imaging opportunities of CAR T cell distribution and killing of cancer cells in vivo.


Asunto(s)
Receptores Quiméricos de Antígenos , Pez Cebra , Animales , Línea Celular Tumoral , Xenoinjertos , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T
10.
PLoS One ; 17(9): e0274687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36121819

RESUMEN

The rapid expansion of the Slavic speakers in the second half of the first millennium CE remains a controversial topic in archaeology, and academic passions on the issue have long run high. Currently, there are three main hypotheses for this expansion. The aim of this paper was to test the so-called "hybrid hypothesis," which states that the movement of people, cultural diffusion and language diffusion all occurred simultaneously. For this purpose, we examined an archaeological Deep Data set with a machine learning method termed time series clustering and with emerging hot spot analysis. The latter required two archaeology-specific modifications: The archaeological trend map and the multiscale emerging hot spot analysis. As a result, we were able to detect two migrations in the Eastern Alps between c. 500 and c. 700 CE. Based on the convergence of evidence from archaeology, linguistics, and population genetics, we have identified the migrants as Alpine Slavs, i.e., people who spoke Slavic and shared specific common ancestry.


Asunto(s)
Arqueología , Genética de Población , Humanos , Lenguaje , Lingüística , Aprendizaje Automático
11.
Front Immunol ; 13: 1004703, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36700229

RESUMEN

Background: Chimeric antigen receptor T (CART) cell therapy targeting the B cell specific differentiation antigen CD19 has shown clinical efficacy in a subset of relapsed/refractory (r/r) diffuse large B cell lymphoma (DLBCL) patients. Despite this heterogeneous response, blood pre-infusion biomarkers predicting responsiveness to CART cell therapy are currently understudied. Methods: Blood cell and serum markers, along with clinical data of DLBCL patients who were scheduled for CART cell therapy were evaluated to search for biomarkers predicting CART cell responsiveness. Findings: Compared to healthy controls (n=24), DLBCL patients (n=33) showed significant lymphopenia, due to low CD3+CD4+ T helper and CD3-CD56+ NK cell counts, while cytotoxic CD3+CD8+ T cell counts were similar. Although lymphopenic, DLBCL patients had significantly more activated HLA-DR+ (P=0.005) blood T cells and a higher frequency of differentiated CD3+CD27-CD28- (28.7 ± 19.0% versus 6.6 ± 5.8%; P<0.001) T cells. Twenty-six patients were infused with CART cells (median 81 days after leukapheresis) and were analyzed for the overall response (OR) 3 months later. Univariate and multivariate regression analyses showed that low levels of differentiated CD3+CD27-CD28- T cells (23.3 ± 19.3% versus 35.1 ± 18.0%) were independently associated with OR. This association was even more pronounced when patients were stratified for complete remission (CR versus non-CR: 13.7 ± 11.7% versus 37.7 ± 17.4%, P=0.001). A cut-off value of ≤ 18% of CD3+CD27-CD28- T cells predicted CR at 12 months with high accuracy (P<0.001). In vitro, CD3+CD8+CD27-CD28- compared to CD3+CD8+CD27+CD28+ CART cells displayed similar CD19+ target cell-specific cytotoxicity, but were hypoproliferative and produced less cytotoxic cytokines (IFN-γ and TNF-α). CD3+CD8+ T cells outperformed CD3+CD4+ T cells 3- to 6-fold in terms of their ability to kill CD19+ target cells. Interpretation: Low frequency of differentiated CD3+CD27-CD28- T cells at leukapheresis represents a novel pre-infusion blood biomarker predicting a favorable response to CART cell treatment in r/r DLBCL patients.


Asunto(s)
Antígenos CD28 , Linfoma de Células B Grandes Difuso , Humanos , Linfocitos T CD8-positivos , Diferenciación Celular , Antígenos CD19 , Linfoma de Células B Grandes Difuso/terapia , Tratamiento Basado en Trasplante de Células y Tejidos
12.
Cancer Cell ; 40(1): 53-69.e9, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34971569

RESUMEN

Pediatric cancers often mimic fetal tissues and express proteins normally silenced postnatally that could serve as immune targets. We developed T cells expressing chimeric antigen receptors (CARs) targeting glypican-2 (GPC2), a fetal antigen expressed on neuroblastoma (NB) and several other solid tumors. CARs engineered using standard designs control NBs with transgenic GPC2 overexpression, but not those expressing clinically relevant GPC2 site density (∼5,000 molecules/cell, range 1-6 × 103). Iterative engineering of transmembrane (TM) and co-stimulatory domains plus overexpression of c-Jun lowered the GPC2-CAR antigen density threshold, enabling potent and durable eradication of NBs expressing clinically relevant GPC2 antigen density, without toxicity. These studies highlight the critical interplay between CAR design and antigen density threshold, demonstrate potent efficacy and safety of a lead GPC2-CAR candidate suitable for clinical testing, and credential oncofetal antigens as a promising class of targets for CAR T cell therapy of solid tumors.


Asunto(s)
Glipicanos/inmunología , Inmunoterapia Adoptiva , Neuroblastoma/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Línea Celular Tumoral , Glipicanos/metabolismo , Humanos , Inmunoterapia/métodos , Neuroblastoma/patología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
13.
J Virol ; 84(8): 4083-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20147393

RESUMEN

Cytomegalovirus (CMV) infection in patients receiving hematopoietic stem cell transplants (HSCT) is associated with morbidity and mortality. Adoptive T cell immunotherapy has been used to treat viral reactivation but is hardly feasible in high-risk constellations of CMV-positive HSCT patients and CMV-negative stem cell donors. We endowed human effector T cells with a chimeric immunoreceptor (cIR) directed against CMV glycoprotein B. These cIR-engineered primary T cells mediated antiviral effector functions such as cytokine production and cytolysis. This first description of cIR-redirected CMV-specific T cells opens up a new perspective for HLA-independent immunotherapy of CMV infection in high-risk patients.


Asunto(s)
Citomegalovirus/inmunología , Citomegalovirus/fisiología , Receptores Inmunológicos/genética , Linfocitos T/inmunología , Linfocitos T/virología , Células Cultivadas , Infecciones por Citomegalovirus/terapia , Humanos , Inmunoterapia/métodos , Receptores Inmunológicos/metabolismo
14.
J Mol Biol ; 433(22): 167210, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34499921

RESUMEN

Drug resistance poses a major challenge for targeted cancer therapy. To be able to functionally screen large randomly mutated target gene libraries for drug resistance mutations, we developed a biochemically defined high-throughput assay termed PhosphoFlowSeq. Instead of selecting for proliferation or resistance to apoptosis, PhosphoFlowSeq directly analyzes the enzymatic activities of randomly mutated kinases, thereby reducing the dependency on the signaling network in the host cell. Moreover, simultaneous analysis of expression levels enables compensation for expression-based biases on a single cell level. Using EGFR and its kinase inhibitor erlotinib as a model system, we demonstrate that the clinically most relevant resistance mutation T790M is reproducibly detected at high frequencies after four independent PhosphoFlowSeq selection experiments. Moreover, upon decreasing the selection pressure, also mutations which only confer weak resistance were identified, including T854A and L792H. We expect that PhosphoFlowSeq will be a valuable tool for the prediction and functional screening of drug resistance mutations in kinases.


Asunto(s)
Resistencia a Antineoplásicos/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Mutación , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Células HEK293 , Humanos , Tasa de Mutación , Fosforilación/genética , Inhibidores de Proteínas Quinasas/farmacología
15.
FEBS J ; 288(7): 2103-2118, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32794303

RESUMEN

T cells that are genetically engineered to express chimeric antigen receptors (CAR T cells) have shown impressive clinical efficacy against B-cell malignancies. In contrast to these highly potent CD19-targeting CAR T cells, many of those directed against other tumor entities and antigens currently suffer from several limitations. For example, it has been demonstrated that many scFvs used as antigen-binding domains in CARs show some degree of oligomerization, which leads to tonic signaling, T cell exhaustion, and poor performance in vivo. Therefore, in many cases alternatives to scFvs would be beneficial. Fortunately, due to the development of powerful protein engineering technologies, also non-immunoglobulin-based scaffolds can be engineered to specifically recognize antigens, thus eliminating the historical dependence on antibody-based binding domains. Here, we discuss the advantages and disadvantages of such engineered binding scaffolds, in particular with respect to their application in CARs. We review recent studies, collectively showing that there is no functional or biochemical aspect that necessitates the use of scFvs in CARs. Instead, antigen recognition can also be mediated efficiently by engineered binding scaffolds, as well as natural ligands or receptors fused to the CAR backbone. Finally, we critically discuss the risk of immunogenicity and show that the extent of nonhuman amino acid stretches in engineered scaffolds-even in those based on nonhuman proteins-is more similar to humanized scFvs than might be anticipated. Together, we expect that engineered binding scaffolds and natural ligands and receptors will be increasingly used for the design of CAR T cells.


Asunto(s)
Ingeniería de Proteínas , Receptores de Antígenos de Linfocitos T/inmunología , Anticuerpos de Cadena Única/inmunología , Linfocitos T/inmunología , Antígenos CD19/genética , Antígenos CD19/inmunología , Línea Celular Tumoral , Humanos , Inmunoterapia Adoptiva/métodos , Ligandos , Receptores de Antígenos de Linfocitos T/uso terapéutico , Anticuerpos de Cadena Única/uso terapéutico
16.
ACS Synth Biol ; 10(5): 1184-1198, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33843201

RESUMEN

CD19 is among the most relevant targets in cancer immunotherapy. However, its extracellular domain (ECD) is prone to aggregation and misfolding, representing a major obstacle for the development and analysis of CD19-targeted therapeutics. Here, we engineered stabilized CD19-ECD (termed SuperFolder) variants, which also showed improved expression rates and, in contrast to the wild type protein, they could be efficiently purified in their monomeric forms. Despite being considerably more stable, these engineered mutants largely preserved the wild type sequence (>98.8%). We demonstrate that the variant SF05 enabled the determination of the monovalent affinity between CD19 and a clinically approved FMC63-based CAR, as well as monitoring and phenotypic characterization of CD19-directed CAR-T cells in the blood of lymphoma patients. We anticipate that the SuperFolder mutants generated in this study will be highly valuable tools for a range of applications in basic immunology and CD19-targeted cancer immunotherapy.


Asunto(s)
Sustitución de Aminoácidos , Antígenos CD19/genética , Evolución Molecular Dirigida/métodos , Inmunoterapia Adoptiva/métodos , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/terapia , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Secuencia de Aminoácidos , Aminoácidos/genética , Anticuerpos Monoclonales/inmunología , Antígenos CD19/química , Antígenos CD19/inmunología , Células HEK293 , Humanos , Linfoma de Células B Grandes Difuso/sangre , Proteínas Mutantes , Mutación , Dominios Proteicos/inmunología , Pliegue de Proteína , Estabilidad Proteica , Receptores Quiméricos de Antígenos/genética
17.
Cancers (Basel) ; 12(3)2020 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-32121414

RESUMEN

Chimeric antigen receptor (CAR) T cells have proven to be a powerful cellular therapy for B cell malignancies. Massive efforts are now being undertaken to reproduce the high efficacy of CAR T cells in the treatment of other malignancies. Here, predictive preclinical model systems are important, and the current gold standard for preclinical evaluation of CAR T cells are mouse xenografts. However, mouse xenograft assays are expensive and slow. Therefore, an additional vertebrate in vivo assay would be beneficial to bridge the gap from in vitro to mouse xenografts. Here, we present a novel assay based on embryonic zebrafish xenografts to investigate CAR T cell-mediated killing of human cancer cells. Using a CD19-specific CAR and Nalm-6 leukemia cells, we show that live observation of killing of Nalm-6 cells by CAR T cells is possible in zebrafish embryos. Furthermore, we applied Fiji macros enabling automated quantification of Nalm-6 cells and CAR T cells over time. In conclusion, we provide a proof-of-principle study that embryonic zebrafish xenografts can be used to investigate CAR T cell-mediated killing of tumor cells. This assay is cost-effective, fast, and offers live imaging possibilities to directly investigate CAR T cell migration, engagement, and killing of effector cells.

18.
Artículo en Inglés | MEDLINE | ID: mdl-32117929

RESUMEN

The transmembrane protein CD19 is exclusively expressed on normal and malignant B cells and therefore constitutes the target of approved CAR-T cell-based cancer immunotherapies. Current efforts to assess CAR-T cell functionality in a quantitative fashion both in vitro and in vivo are hampered by the limited availability of the properly folded recombinant extracellular domain of CD19 (CD19-ECD) considered as "difficult-to-express" (DTE) protein. Here, we successfully expressed a novel fusion construct consisting of the full-length extracellular domain of CD19 and domain 2 of human serum albumin (CD19-AD2), which was integrated into the Rosa26 bacterial artificial chromosome vector backbone for generation of a recombinant CHO-K1 production cell line. Product titers could be further boosted using valproic acid as a chemical chaperone. Purified monomeric CD19-AD2 proved stable as shown by non-reduced SDS-PAGE and SEC-MALS measurements. Moreover, flow cytometric analysis revealed specific binding of CD19-AD2 to CD19-CAR-T cells. Finally, we demonstrate biological activity of our CD19-AD2 fusion construct as we succeeded in stimulating CD19-CAR-T cells effectively with the use of CD19-AD2-decorated planar supported lipid bilayers.

19.
Ther Adv Med Oncol ; 12: 1758835920937891, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774473

RESUMEN

BACKGROUND: Low survival rates in metastatic high-grade osteosarcoma (HGOS) have remained stagnant for the last three decades. This study aims to investigate the role of aminopeptidase N (ANPEP) in HGOS progression and its targeting with a novel lipophilic peptidase-enhanced cytotoxic compound melphalan flufenamide (melflufen) in HGOS. METHODS: Meta-analysis of publicly available gene expression datasets was performed to determine the impact of ANPEP gene expression on metastasis-free survival of HGOS patients. The efficacy of standard-of-care anti-neoplastic drugs and a lipophilic peptidase-enhanced cytotoxic conjugate melflufen was investigated in patient-derived HGOS ex vivo models and cell lines. The kinetics of apoptosis and necrosis induced by melflufen and doxorubicin were compared. Anti-neoplastic effects of melflufen were investigated in vivo. RESULTS: Elevated ANPEP expression in diagnostic biopsies of HGOS patients was found to significantly reduce metastasis-free survival. In drug sensitivity assays, melflufen has shown an anti-proliferative effect in HGOS ex vivo samples and cell lines, including those resistant to methotrexate, etoposide, doxorubicin, and PARP inhibitors. Further, HGOS cells treated with melflufen displayed a rapid induction of apoptosis and this sensitivity correlated with high expression of ANPEP. In combination treatments, melflufen demonstrated synergy with doxorubicin in killing HGOS cells. Finally, Melflufen displayed anti-tumor growth and anti-metastatic effects in vivo. CONCLUSION: This study may pave the way for use of melflufen as an adjuvant to doxorubicin in improving the therapeutic efficacy for the treatment of metastatic HGOS.

20.
Nat Commun ; 11(1): 4166, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32820173

RESUMEN

T cells engineered to express chimeric antigen receptors (CAR-T cells) have shown impressive clinical efficacy in the treatment of B cell malignancies. However, the development of CAR-T cell therapies for solid tumors is hampered by the lack of truly tumor-specific antigens and poor control over T cell activity. Here we present an avidity-controlled CAR (AvidCAR) platform with inducible and logic control functions. The key is the combination of (i) an improved CAR design which enables controlled CAR dimerization and (ii) a significant reduction of antigen-binding affinities to introduce dependence on bivalent interaction, i.e. avidity. The potential and versatility of the AvidCAR platform is exemplified by designing ON-switch CARs, which can be regulated with a clinically applied drug, and AND-gate CARs specifically recognizing combinations of two antigens. Thus, we expect that AvidCARs will be a highly valuable platform for the development of controllable CAR therapies with improved tumor specificity.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Citotoxicidad Inmunológica/inmunología , Humanos , Activación de Linfocitos/inmunología , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA