Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(35): 10724-10733, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39186062

RESUMEN

Tumor acidity-driven nanomotors may offer robust propulsion for tumor-specific penetrating drug delivery. Herein, an acidity-actuated poly(amino acid) calcium phosphate (CaP) hybrid nanomotor (PCaPmotor) was designed, using a mPEG-PAsp-PPhe@THZ531 micelle (Poly@THZ) for CaP mineralization accompanied by αPD-L1 antibody encapsulation. Dissolution of the CaP layer in an acidic tumor environment gave off heat energy to propel the nanomotor to augment the cellular uptake and penetration into deeply seated cancer cells while facilitating αPD-L1 release. THZ531 delivered by the PCaPmotor inhibited CDK12 and its down-streamed phosphorylation of RNAP-II to increase the cancer immunogenicity events such as the DNA damage, cell apoptosis, immunogenic cell death, lysosomal function disturbance, and MHC-I upregulation. THZ531 and αPD-L1 cosupplied by PCaPmotor significantly increased the frequency of DCs maturation and intratumoral infiltration of CTLs, but the two free drugs did not. Consequently, the PCaP@THZ/αPD-L1 nanomotor resulted in synergistic anticancer immunotherapy in mice. This acid-actuated PCaPmotor represented a new paradigm for penetrating drug delivery.


Asunto(s)
Fosfatos de Calcio , Sistemas de Liberación de Medicamentos , Inmunoterapia , Fosfatos de Calcio/química , Animales , Ratones , Humanos , Línea Celular Tumoral , Polímeros/química , Micelas , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Concentración de Iones de Hidrógeno , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Antígeno B7-H1 , Nanopartículas/química
2.
Br J Cancer ; 131(5): 870-882, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38997406

RESUMEN

BACKGROUND: The prognostic and therapeutic implications of endothelial cells (ECs) heterogeneity in prostate cancer (PCa) are poorly understood. METHODS: We investigated associations of EC heterogeneity with PCa recurrence and castration resistance in 8 bulk transcriptomic and 4 single-cell RNA-seq cohorts. A recurrence-associated EC (RAEC) signature was constructed by comparing 11 machine learning algorithms through nested cross-validation. Functional relevances of RAEC-specific genes were also tested. RESULTS: A subset of ECs was significantly associated with recurrence in primary PCa and named RAECs. RAECs were characteristic of tip and immature cells and were enriched in migration, angiogenesis, and collagen-related pathways. We then developed an 18-gene RAEC signature (RAECsig) representative of RAECs. Higher RAECsig scores independently predicted tumor recurrence and performed better or comparably compared to clinicopathological factors and commercial gene signatures in multiple PCa cohorts. Of the 18 RAECsig genes, FSCN1 was upregulated in ECs from PCa with higher Gleason scores; and the silencing of FSCN1, TMEME255B, or GABRD in ECs either attenuated tube formation or inhibited PCa cell proliferation. Finally, higher RAECsig scores predicted castration resistance in both primary and castration-resistant PCa. CONCLUSION: This study establishes an endothelial signature that links a subset of ECs to prostate cancer recurrence and castration resistance.


Asunto(s)
Células Endoteliales , Recurrencia Local de Neoplasia , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Progresión de la Enfermedad , Pronóstico , Transcriptoma , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
3.
Biomacromolecules ; 25(6): 3685-3702, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38779908

RESUMEN

Combination therapy has emerged as a promising approach for treating tumors, although there is room for improvement. This study introduced a novel strategy that combined the enhancement of apoptosis, ferroptosis, and DNA damage to improve therapeutic outcomes for prostate cancer. Specifically, we have developed a supramolecular oxidative stress nanoamplifier, which was comprised of ß-cyclodextrin, paclitaxel, and ferrocene-poly(ethylene glycol). Paclitaxel within the system disrupted microtubule dynamics, inducing G2/M phase arrest and apoptosis. Concurrently, ferrocene utilized hydrogen peroxide to generate toxic hydroxyl radicals in cells through the Fenton reaction, triggering a cascade of reactive oxygen species expansion, reduction of glutathione levels, lipid peroxidation, and ferroptosis. The increased number of hydroxyl radicals and the inhibitory effect of THZ531 on DNA repair mechanisms exacerbated DNA damage within tumor cells. As expected, the supramolecular nanoparticles demonstrated excellent drug delivery ability to tumor cells or tissues, exhibited favorable biological safety in vivo, and enhanced the killing effect on prostate cancer.


Asunto(s)
Estrés Oxidativo , Paclitaxel , Neoplasias de la Próstata , Paclitaxel/farmacología , Paclitaxel/química , Humanos , Masculino , Estrés Oxidativo/efectos de los fármacos , Animales , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Ratones , Metalocenos/química , Nanopartículas/química , Apoptosis/efectos de los fármacos , Compuestos Ferrosos/química , Compuestos Ferrosos/farmacología , Línea Celular Tumoral , beta-Ciclodextrinas/química , Polietilenglicoles/química , Ratones Desnudos , Ferroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Daño del ADN/efectos de los fármacos
4.
BMC Urol ; 22(1): 8, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35090432

RESUMEN

The biomarkers have an important guiding role in prognosis and treatment of patients with bladder cancer (BC). The aim of the present study was to identify and evaluate a prognostic gene signature in BC patients. The gene expression profiles of BC samples and the corresponding clinicopathological data were downloaded from GEO and TCGA. The differentially expressed genes (DEGs) were identified by R software. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) Cox regression were applied to construct the prognostic score model. A nomogram was established with the identified prognostic factors to predict the overall survival rates of BC patients. The discriminatory and predictive capacity of the nomogram was evaluated based on the concordance index (C-index), calibration curves and decision curve analysis (DCA). A 7-gene signature (KLRB1, PLAC9, SETBP1, NR2F1, GRHL2, ANXA1 and APOL1) was identified from 285 DEGs by univariate and LASSO Cox regression analyses. Univariate and multivariate Cox regression analyses showed that age, lymphovascular invasion, lymphatic metastasis, metastasis and the 7-gene signature risk score was an independent predictor of BC patient prognosis. A nomogram that integrated these independent prognostic factors was constructed. The C-index (0.73, CI 95%, 0.693-0.767) and calibration curve demonstrated the good performance of the nomogram. DCA of the nomogram further showed that this model exhibited good net benefit. The combined 7-gene signature could serve as a biomarker for predicting BC prognosis. The nomogram built by risk score and other clinical factors could be an effective tool for predicting the prognosis of patients with BC.


Asunto(s)
Nomogramas , Transcriptoma , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/mortalidad , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia
5.
Abdom Radiol (NY) ; 49(9): 3096-3106, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38733392

RESUMEN

BACKGROUND: To develop and compare machine learning models based on triphasic contrast-enhanced CT (CECT) for distinguishing between benign and malignant renal tumors. MATERIALS AND METHODS: In total, 427 patients were enrolled from two medical centers: Center 1 (serving as the training set) and Center 2 (serving as the external validation set). First, 1781 radiomic features were individually extracted from corticomedullary phase (CP), nephrographic phase (NP), and excretory phase (EP) CECT images, after which 10 features were selected by the minimum redundancy maximum relevance method. Second, random forest (RF) models were constructed from single-phase features (CP, NP, and EP) as well as from the combination of features from all three phases (TP). Third, the RF models were assessed in the training and external validation sets. Finally, the internal prediction mechanisms of the models were explained by the SHapley Additive exPlanations (SHAP) approach. RESULTS: A total of 266 patients with renal tumors from Center 1 and 161 patients from Center 2 were included. In the training set, the AUCs of the RF models constructed from the CP, NP, EP, and TP features were 0.886, 0.912, 0.930, and 0.944, respectively. In the external validation set, the models achieved AUCs of 0.860, 0.821, 0.921, and 0.908, respectively. The "original_shape_Flatness" feature played the most important role in the prediction outcome for the RF model based on EP features according to the SHAP method. CONCLUSIONS: The four RF models efficiently differentiated benign from malignant solid renal tumors, with the EP feature-based RF model displaying the best performance.


Asunto(s)
Medios de Contraste , Neoplasias Renales , Aprendizaje Automático , Radiómica , Tomografía Computarizada por Rayos X , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Diagnóstico Diferencial , Neoplasias Renales/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
6.
Adv Healthc Mater ; 13(3): e2301345, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37855250

RESUMEN

Chemotherapy remains the most essential treatment for prostate cancer, but multidrug resistance (MDR) contributes to chemotherapy failure and tumor-related deaths. The overexpression of P-glycoprotein (P-gp) is one of the main mechanisms behind MDR. Here, this work reports a multimodal nanoplatform with a reactive oxygen species (ROS) cascade for gas therapy/ferroptosis/chemotherapy in reversing MDR. The nanoplatform disassembles when responding to intracellular ROS and exerts three main functions: First, nitric oxide (NO) targeted delivery can reverse MDR by downregulating P-gp expression and inhibiting mitochondrial function. Second, ferrocene-induced ferroptosis breaks the redox balance in the tumor intracellular microenvironment and synergistically acts against the tumor. Third, the release of paclitaxel (PTX) is precisely controlled in situ in the tumor for chemotherapy that avoids damage to normal tissues. Excitingly, this multimodal nanoplatform is a promising weapon for reversing MDR and may provide a pioneering paradigm for synergetic cancer therapy.


Asunto(s)
Ferroptosis , Neoplasias de la Próstata , Masculino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Resistencia a Antineoplásicos , Resistencia a Múltiples Medicamentos , Paclitaxel/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
7.
Adv Healthc Mater ; 13(5): e2302691, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37990414

RESUMEN

Messenger RNA (mRNA) vaccine is explored as a promising strategy for cancer immunotherapy, but the side effects, especially the liver-related damage caused by LNP, raise concerns about its safety. In this study, a novel library of 248 ionizable lipids comprising 1,2-diesters is designed via a two-step process involving the epoxide ring-opening reaction with carboxyl group-containing alkyl chains followed by an esterification reaction with the tertiary amines. Owing to the special chemical structure of 1,2-diesters, the top-performing lipids and formulations exhibit a faster clearance rate in the liver, contributing to increased stability and higher safety compared with DLin-MC3-DMA. Moreover, the LNP shows superior intramuscular mRNA delivery and elicits robust antigen-specific immune activation. The vaccinations delivered by the LNP system suppress tumor growth and prolong survival in both model human papillomavirus E7 and ovalbumin antigen-expressing tumor models. Finally, the structure of lipids which enhances the protein expression in the spleen and draining lymph nodes compared with ALC-0315 lipid in Comirnaty is further optimized. In conclusion, the 1, 2-diester-derived lipids exhibit rapid liver clearance and effective anticancer efficiency to different types of antigens-expressing tumor models, which may be a safe and universal platform for mRNA vaccines.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Humanos , Vacunas de ARNm , ARN Mensajero/metabolismo , Hígado/metabolismo , Vacunación , Lípidos/química , Nanopartículas/química
8.
J Control Release ; 368: 637-649, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484895

RESUMEN

Drug-based supramolecular self-assembling delivery systems have enhanced the bioavailability of chemotherapeutic drugs and reduced systemic side effects; however, improving the delivery efficiency and responsive release ability of these systems remains challenging. This study focuses primarily on the utilization of per-6-thio-ß-cyclodextrin (CD) to link a significant quantity of paclitaxel (PTX) via ROS-sensitive thioketal (TK) linkages (designated as CDTP), thereby allowing efficiently drug release when exposed to high levels of reactive oxygen species (ROS) in the tumor microenvironment. To construct these supramolecular nanoparticles (NPs) with CDTP, we introduced PEGylated ferrocene (Fc) through host-guest interactions. The intracellular hydrogen peroxide (H2O2) is converted into hydroxyl radicals (•OH) through the Fc-catalyzed Fenton reaction. Additionally, the generated Fc+ consumes the antioxidant glutathione (GSH). In both in vivo and in vitro experiments, CDTP@Fc-PEG NPs were absorbed effectively by tumor cells, which increased levels of ROS and decreased levels of GSH, disrupting the redox balance of cancer cells and increasing their sensitivity to chemotherapy. Furthermore, CDTP@Fc-PEG NPs exhibited high tumor accumulation and cytotoxicity without causing significant toxicity to healthy organs. Collectively, our results suggest CDTP@Fc-PEG NPs as a promising supramolecular nano-delivery platform for high drug-loading of PTX and synergistic chemotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Sistemas de Liberación de Medicamentos , Paclitaxel/uso terapéutico , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
9.
Oncoimmunology ; 13(1): 2373526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948931

RESUMEN

Prostate cancer (PCa) is characterized as a "cold tumor" with limited immune responses, rendering the tumor resistant to immune checkpoint inhibitors (ICI). Therapeutic messenger RNA (mRNA) vaccines have emerged as a promising strategy to overcome this challenge by enhancing immune reactivity and significantly boosting anti-tumor efficacy. In our study, we synthesized Tetra, an mRNA vaccine mixed with multiple tumor-associated antigens, and ImmunER, an immune-enhancing adjuvant, aiming to induce potent anti-tumor immunity. ImmunER exhibited the capacity to promote dendritic cells (DCs) maturation, enhance DCs migration, and improve antigen presentation at both cellular and animal levels. Moreover, Tetra, in combination with ImmunER, induced a transformation of bone marrow-derived dendritic cells (BMDCs) to cDC1-CCL22 and up-regulated the JAK-STAT1 pathway, promoting the release of IL-12, TNF-α, and other cytokines. This cascade led to enhanced proliferation and activation of T cells, resulting in effective killing of tumor cells. In vivo experiments further revealed that Tetra + ImmunER increased CD8+T cell infiltration and activation in RM-1-PSMA tumor tissues. In summary, our findings underscore the promising potential of the integrated Tetra and ImmunER mRNA-LNP therapy for robust anti-tumor immunity in PCa.


Asunto(s)
Adyuvantes Inmunológicos , Antígenos de Neoplasias , Vacunas contra el Cáncer , Células Dendríticas , Neoplasias de la Próstata , ARN Mensajero , Animales , Masculino , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/tratamiento farmacológico , Antígenos de Neoplasias/inmunología , Ratones , Células Dendríticas/inmunología , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Humanos , Ratones Endogámicos C57BL , Línea Celular Tumoral , Vacunas de ARNm , Linfocitos T CD8-positivos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inmunoterapia/métodos , Activación de Linfocitos/efectos de los fármacos
10.
Acta Biomater ; 168: 593-605, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37474083

RESUMEN

Immune checkpoint blockade (ICB) antibody such as anti-PD-L1 (aPD-L1) activates cytotoxic T cells (CTLs) to combat cancer, but they showed poor efficacy in prostate cancer (PCa). Lysosome-dependent autophagy is utilized by cancer cells to degrade their MHC-I and to lower their vulnerability to TNF-α and CTLs. Lysosomal pH-sensitive polymeric nanoparticle as a drug delivery carrier may also be a novel autophagy inhibitor to boost immunotherapy, but such an important effect has not been investigated. Herein, we developed a unique tumor acidity-activatable macromolecular nanodrug (called P-PDL1-CP) with the poly(2-diisopropylaminoethyl methacrylate) (PDPA) core and the conjugations of both aPD-L1 and long-chain polyethylene glycol (PEG) coating. The PDPA core was demonstrated to disturb lysosome to block the autophagic flux, thus elevating the cancer cell's MHC-I expression and vulnerability to the TNF-α and CTLs. Long-chain PEG facilitated a good tumor accumulation of P-PDL1-CP nanodrug. Furthermore, P-PDL1-CP nanodrug inhibited tumor autophagy, which synergized with aPD-L1 to promote the tumor-infiltrating CTLs and DCs maturation, to elevate intratumoral TNF-α and IFN-γ levels, and to elicit an anti-tumor immune memory effect in mice for PCa growth inhibition with low side effects. This study verified the synergistic anti-PCa treatment between autophagy inhibition and PD-L1 blockade and meantime broadened the application of pH-sensitive macromolecular nanodrug. STATEMENT OF SIGNIFICANCE: A macromolecular nanodrug, comprising the PDPA core and the surface conjugation of both aPD-L1 antibodies and long-chain PEG coating via a tumor acidity-labile α-carboxy-dimethylmaleic anhydride amine bond, was developed. Tumoral acidity triggered the release of aPD-L1 for immunotherapy. Meantime, the charge switch of the remanent nanodrug enhanced the cancer cell uptake of PDPA, which disturbed the lysosomes to inhibit autophagy. This advanced nanodrug promoted the tumor-infiltrating CTLs and DCs maturation, elevated the intratumoral TNF-α and IFN-γ levels, and elicited the robust anti-tumor immune memory effect. This study demonstrated that the pH-sensitive PDPA macromolecule could serve as a carrier for the aPD-L1 delivery and as an efficient autophagy inhibitor to boost the immunotherapy of prostate cancer.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Linfocitos T Citotóxicos/metabolismo , Inmunoterapia , Línea Celular Tumoral , Autofagia , Microambiente Tumoral
11.
Front Oncol ; 12: 975183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119492

RESUMEN

Objectives: (1) To assess the methodological quality and risk of bias of radiomics studies investigating the diagnostic performance in adrenal masses and (2) to determine the potential diagnostic value of radiomics in adrenal tumors by quantitative analysis. Methods: PubMed, Embase, Web of Science, and Cochrane Library databases were searched for eligible literature. Methodological quality and risk of bias in the included studies were assessed by the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS). The diagnostic performance was evaluated by pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC). Spearman's correlation coefficient and subgroup analysis were used to investigate the cause of heterogeneity. Publication bias was examined using the Deeks' funnel plot. Results: Twenty-eight studies investigating the diagnostic performance of radiomics in adrenal tumors were identified, with a total of 3579 samples. The average RQS was 5.11 (14.2% of total) with an acceptable inter-rater agreement (ICC 0.94, 95% CI 0.93-0.95). The risk of bias was moderate according to the result of QUADAS-2. Nine studies investigating the use of CT-based radiomics in differentiating malignant from benign adrenal tumors were included in the quantitative analysis. The pooled sensitivity, specificity, DOR and AUC with 95% confidence intervals were 0.80 (0.68-0.88), 0.83 (0.73-0.90), 19.06 (7.87-46.19) and 0.88 (0.85-0.91), respectively. There was significant heterogeneity among the included studies but no threshold effect in the meta-analysis. The result of subgroup analysis demonstrated that radiomics based on unenhanced and contrast-enhanced CT possessed higher diagnostic performance, and second-order or higher-order features could enhance the diagnostic sensitivity but also increase the false positive rate. No significant difference in diagnostic ability was observed between studies with machine learning and those without. Conclusions: The methodological quality and risk of bias of studies investigating the diagnostic performance of radiomics in adrenal tumors should be further improved in the future. CT-based radiomics has the potential benefits in differentiating malignant from benign adrenal tumors. The heterogeneity between the included studies was a major limitation to obtaining more accurate conclusions. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/ CRD 42022331999 .

12.
Br J Radiol ; 95(1131): 20210191, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34289319

RESUMEN

OBJECTIVE: To develop and validate a non-invasive MRI-based radiomics signature for distinguishing between indolent and aggressive prostate cancer (PCa) prior to therapy. METHODS: In all, 139 qualified and pathology-confirmed PCa patients were divided into a training set (n = 93) and a validation set (n = 46). A total of 1576 radiomics features were extracted from the T2WI (n = 788) and diffusion-weighted imaging (n = 788) for each patient. The Select K Best and the least absolute shrinkage and selection operator regression algorithm were used to construct a radiomics signature in the training set. The predictive performance of the radiomics signature was assessed in the training set and then validated in the validation set by receiver operating characteristic curve analysis. We computed the calibration curve and the decision curve to evaluate the calibration and clinical usefulness of the signature. RESULTS: Nine radiomics features were identified to form the radiomics signature. The radiomics score (Rad-score) was significantly different between indolent and aggressive PCa (p < 0.001). The radiomics signature exhibited favorable discrimination between the indolent and aggressive PCa groups in the training set (AUC: 0.853, 95% CI: 0.766 to 0.941) and validation set (AUC: 0.901, 95% CI: 0.793 to 1.000). The decision curve analysis showed that a greater net benefit would be obtained when the threshold probability ranged from 20 to 90%. CONCLUSION: The multiparametric MRI-based radiomics signature can potentially serve as a non-invasive tool for distinguishing between indolent and aggressive PCa prior to therapy. ADVANCES IN KNOWLEDGE: The multiparametric MRI-based radiomics signature has the potential to non-invasively distinguish between the indolent and aggressive PCa, which might aid clinicians in making personalized therapeutic decisions.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Algoritmos , Biomarcadores de Tumor/sangre , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Clasificación del Tumor , Estadificación de Neoplasias , Antígeno Prostático Específico/sangre , Estudios Retrospectivos
13.
Adv Healthc Mater ; 11(23): e2201472, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36126678

RESUMEN

Sonodynamic therapy (SDT), a novel noninvasive therapeutic modality, provides many noteworthy benefits by generating reactive oxygen species (ROS). However, water-insoluble sonosensitizer delivery strategies have continuously underperformed because of unavoidable toxicity and a short circulation time. In this study, l-cystine derivative-based biocompatible nanoparticles (NPs) that can be used in SDT and induce limited cytotoxicity are designed and synthesized. After ultrasonic (US) irradiation, these sonosensitizer-loaded NPs show highly efficient sonodynamic performance that leads to cytotoxic ROS production. The ability to stop and start ROS generation induced by US irradiation enables accurate temporal and spatial control. In vivo and in vitro experiments are systematically performed to investigate the effects of this system on tumors, and the results indicate remarkable tumor suppression via markedly high persistent oxidative stress that induces peroxidation and endoplasmic reticulum stress. Thus, this novel temporally and spatially controllable ROS generation platform offers a safe and effective theranostic strategy for prostate cancer treatment.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Estrés Oxidativo
14.
Adv Sci (Weinh) ; 9(22): e2104823, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35652200

RESUMEN

AURKA is a potential kinase target in various malignancies. The kinase-independent oncogenic functions partially disclose the inadequate efficacy of the kinase inhibitor in a Phase III clinical trial. Simultaneously targeting the catalytic and noncatalytic functions of AURKA may be a feasible approach. Here, a set of AURKA proteolysis targeting chimeras (PROTACs) are developed. The CRBN-based dAurA383 preferentially degrades the highly abundant mitotic AURKA, while cIAP-based dAurA450 degrades the lowly abundant interphase AURKA in acute myeloid leukemia (AML) cells. The proteomic and transcriptomic analyses indicate that dAurA383 triggers the "mitotic cell cycle" and "stem cell" processes, while dAurA450 inhibits the "MYC/E2F targets" and "stem cell" processes. dAurA383 and dAurA450 are combined as a PROTAC cocktail. The cocktail effectively degrades AURKA, relieves the hook effect, and synergistically inhibits AML stem cells. Furthermore, the PROTAC cocktail induces AML regression in a xenograft mouse model and primary patient blasts. These findings establish the PROTAC cocktail as a promising spatial-temporal drug administration strategy to sequentially eliminate the multifaceted functions of oncoproteins, relieve the hook effect, and prevent cancer stem cell-mediated drug resistance.


Asunto(s)
Aurora Quinasa A , Leucemia Mieloide Aguda , Animales , Humanos , Ratones , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proteómica
15.
Front Cell Dev Biol ; 9: 683242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004665

RESUMEN

Background: As an epigenetic alteration, DNA methylation plays an important role in early Wilms tumorigenesis and is possibly used as marker to improve the diagnosis and classification of tumor heterogeneity. Methods: Methylation data, RNA-sequencing (RNA-seq) data, and corresponding clinical information were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. The prognostic values of DNA methylation subtypes in Wilms tumor were identified. Results: Four prognostic subtypes of Wilms tumor patients were identified by consensus cluster analysis performed on 312 independent prognostic CpG sites. Cluster one showed the best prognosis, whereas Cluster two represented the worst prognosis. Unique CpG sites identified in Cluster one that were not identified in other subtypes were assessed to construct a prognostic signature. The prognostic methylation risk score was closely related to prognosis, and the area under the curve (AUC) was 0.802. Furthermore, the risk score based on prognostic signature was identified as an independent prognostic factor for Wilms tumor in univariate and multivariate Cox regression analyses. Finally, the abundance of B cell infiltration was higher in the low-risk group than in the high-risk group, based on the methylation data. Conclusion: Collectively, we divided Wilms tumor cases into four prognostic subtypes, which could efficiently identify high-risk Wilms tumor patients. Prognostic methylation risk scores that were significantly associated with the adverse clinical outcomes were established, and this prognostic signature was able to predict the prognosis of Wilms tumor in children, which may be useful in guiding clinicians in therapeutic decision-making. Further independent studies are needed to validate and advance this hypothesis.

16.
Comput Struct Biotechnol J ; 19: 4941-4953, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527198

RESUMEN

MicroRNA (miRNA) deregulation plays a critical role in the heterogeneous development of prostate cancer (PCa) by tuning mRNA levels. Herein, we aimed to characterize the molecular features of PCa by clustering the miRNA-regulated transcriptome with non-negative matrix factorization. Using 478 PCa samples from The Cancer Genome Atlas, four molecular subtypes (S-I, S-II, S-III, and S-IV) were identified and validated in two merged microarray and RNAseq datasets with 656 and 252 samples, respectively. Interestingly, the four subtypes showed distinct clinical and biological features after comprehensive analyses of clinical features, multiomic profiles, immune infiltration, and drug sensitivity. S-I is basal/stem/mesenchymal-like and immune-excluded with marked transforming growth factor ß, epithelial-mesenchymal transition and hypoxia signals, increased sensitivity to olaparib, and intermediate prognosis. S-II is luminal/metabolism-active and responsive to androgen deprivation therapy with frequent TMPRSS2-ERG fusion and a good prognosis. S-III is characterized by moderate proliferative and metabolic activity, sensitivity to taxane-based chemotherapy, and intermediate prognosis. S-IV is highly proliferative with moderate EMT and stemness, frequent deletions of TP53, PTEN and RB, and the poorest prognosis; it is also immune-inflamed and sensitive to anti-PD-L1 therapy. Overall, based on miRNA-regulated gene profiles, this study identified four distinct PCa subtypes that could improve risk stratification at diagnosis and provide therapeutic guidance.

17.
Cell Oncol (Dordr) ; 44(4): 871-887, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33905040

RESUMEN

PURPOSE: Transcriptional addiction plays a pivotal role in maintaining the hallmarks of cancer cells. Thus, targeting super-enhancers (SEs), which modulate the transcriptional activity of oncogenes, has become an attractive strategy for cancer therapy. As yet, however, the molecular mechanisms of this process in bladder cancer (BC) remain to be elucidated. Here, we aimed to provide detailed information regarding the SE landscape in BC and to investigate new potential pharmaceutical targets for BC therapy. METHODS: We employed THZ1 as a potent and specific CDK7 inhibitor. In vitro and in vivo studies were carried out to investigate the anticancer and apoptosis-inducing effects of THZ1 on BC cells. Whole-transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) were performed to investigate the mechanism and function of SE-linked oncogenic transcription in BC cells. RESULTS: We found that THZ1 serves as an effective and potent inhibitor with suppressive activity against BC cells. An integrative analysis of THZ1-sensitive and SE-associated oncogenes yielded potential new pharmaceutical targets, including DDIT4, B4GALT5, PSRC1 and MED22. Combination treatment with THZ1 and the DDIT4 inhibitor rapamycin effectively suppressed BC cell growth. In addition, we found that THZ1 and rapamycin sensitized BC cells to conventional chemotherapy. CONCLUSIONS: Our data indicate that exploring BC gene regulatory mechanisms associated with SEs through integrating RNA-seq and ChIP-seq data improves our understanding of BC biology and provides a basis for innovative therapies.


Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Oncogenes/genética , Fenilendiaminas/farmacología , Pirimidinas/farmacología , Neoplasias de la Vejiga Urinaria/genética , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Sinergismo Farmacológico , Femenino , Humanos , Ratones Desnudos , RNA-Seq/métodos , Sirolimus/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Quinasa Activadora de Quinasas Ciclina-Dependientes
18.
Cell Death Dis ; 12(8): 740, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315855

RESUMEN

Androgen receptor (AR) signaling inhibitors provide limited survival benefits to patients with prostate cancer (PCa), and worse, few feasible genomic lesions restrict targeted treatment to PCa. Thus, a better understanding of the critical dependencies of PCa may enable more feasible therapeutic approaches to the dilemma. We performed a kinome-scale CRISPR/Cas9 screen and identified cyclin-dependent kinase 12 (CDK12) as being conservatively required for PCa cell survival. Suppression of CDK12 by the covalent inhibitor THZ531 led to an obvious anti-PCa effect. Mechanistically, THZ531 downregulated AR signaling and preferentially repressed a distinct class of CDK12 inhibition-sensitive transcripts (CDK12-ISTs), including prostate lineage-specific genes, and contributed to cellular survival processes. Integration of the super-enhancer (SE) landscape and CDK12-ISTs indicated a group of potential PCa oncogenes, further conferring the sensitivity of PCa cells to CDK12 inhibition. Importantly, THZ531 strikingly synergized with multiple AR antagonists. The synergistic effect may be driven by attenuated H3K27ac signaling on AR targets and an intensive SE-associated apoptosis pathway. In conclusion, we highlight the validity of CDK12 as a druggable target in PCa. The synergy of THZ531 and AR antagonists suggests a potential combination therapy for PCa.


Asunto(s)
Sistemas CRISPR-Cas/genética , Quinasas Ciclina-Dependientes/metabolismo , Neoplasias de la Próstata/enzimología , Antagonistas de Andrógenos/farmacología , Anilidas/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Sinergismo Farmacológico , Epigénesis Genética/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Pirimidinas/farmacología , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Front Oncol ; 10: 586192, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330067

RESUMEN

BACKGROUND: The skeleton is a preferred site for prostate cancer metastasis, and once metastases occur, the disease becomes incurable. Increasing evidence indicates the prognostic value of skeletal-related parameters, but remains controversial. OBJECTIVE: To perform a systematic review of the existing literature on assessing the prognostic value of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BSAP), urinary N-telopeptide (uNTx), bone scan index (BSI), and Brief Pain Inventory Short Form (BPI-SF) score in castration-resistant prostate cancer (CRPC) patients with skeleton metastasis. EVIDENCE ACQUISITION: PubMed, Web of Science, Cochrane Library, Medline, OVID, and Embase between 2010 and 2019 were reviewed. Key terms included randomized trials, prostate cancer, alkaline phosphatase, bone-specific alkaline phosphatase, urinary N-telopeptide, bone scan index, and Brief Pain Inventory Short Form. Data were collected, checked, and analyzed from December 2019 to March 2020. Hazard ratios (HRs) and overall survival (OS) were extracted to estimate the relationship between the above parameters and OS in patients with metastatic prostate cancer (mPCa). EVIDENCE SYNTHESIS: A total of 1,055 studies were identified via initial screening, including 1,032 from database research and 23 from other sources. After deduplication, 164 records were further excluded according to titles and abstracts. The remaining 36 potential articles were carefully screened. In the end, 15 eligible studies syntheses, which were published between 2010 and 2019, comprised data for a total of 11,378 patients, whose mean age ranged from 66 to 72 years. The sample size ranged from 82 to 1,901 patients. And the median follow-up time ranged from 24 to 55 months. Based on 15 randomized controlled trials published between 2010 and 2019, higher ALP levels (HR = 1.60, 95% CI: 1.38-1.87 P < 0.001), higher BSAP levels (HR = 1.31, 95% CI: 1.11-1.54 P = 0.001), higher uNTx levels (HR = 1.40, 95% CI: 1.29-1.52 P < 0.001), BSI progression (HR = 1.18, 95% CI: 1.08-1.29 P < 0.001), and higher BPI-SF score (HR = 1.47, 95% CI: 1.35-1.61 P < 0.001) had an association with inferior OS. CONCLUSIONS: Higher levels of ALP/BSAP and uNTx, a higher BPI-SF score, and progression of BSI predict inferior OS in patients with mCRPC. More randomized control trials are needed to investigate the promising value of these parameters.

20.
Urolithiasis ; 46(4): 357-361, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28608037

RESUMEN

The purpose of the study was to present our experience of retaining encrusted ureteral stents (EUS) and discuss the effectiveness of 4.5/6.5F ureteroscope (URS) in the procedure. The data of patients with EUS in our center from January 2012 to December 2016 were retrospectively analyzed. The inclusion criterion was ureteral stents that required intervention above the ureteral orifice to retain and was proved to be encrusted. Impacted stents would be removed by ureteroscope lithotripsy (URL) via 8/9.8F or 4.5/6.5F URS. Percutaneous nephrolithotomy (PCNL) then be the further step if URL failed. 46 cases of EUS were treated in 36 patients from January 2012 to December 2016 in our institution. All subjects consisted of 18 males and 18 females; the average age was 49.81 ± 16.40 years (range 5-86). The mean time from stent insertion to encrustation was 9.28 ± 17.15 months (range 1-120). URL was performed in 44 cases (95.7%), including 19 cases (41.3%) by 8/9.8F URS and 25 cases (54.4%) by 4.5/6.5F URS due to the conventional URS's failure to get into ureteral orifice or further part of ureter. Two patients (4.3%) underwent PCNL due to the inseparable circle developed by the intra-renal segment of encrusted stents. None of the patients underwent extracorporeal shock wave lithotripsy (ESWL) and open surgery. All stents were eventually removed without blood transfusion or ureteral injury, except three cases with post-operative fever. All procedures were performed under one-session anesthesia. URL by 4.5/6.5F ureteroscope might increase the success rate of retaining encrusted ureteral stents remarkably, and then reduce the possibility of PCNL effectively.


Asunto(s)
Remoción de Dispositivos/métodos , Litotricia/métodos , Complicaciones Posoperatorias/epidemiología , Stents/efectos adversos , Ureteroscopía/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Remoción de Dispositivos/efectos adversos , Remoción de Dispositivos/instrumentación , Remoción de Dispositivos/estadística & datos numéricos , Femenino , Humanos , Litotricia/efectos adversos , Litotricia/instrumentación , Litotricia/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Nefrolitotomía Percutánea/estadística & datos numéricos , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Insuficiencia del Tratamiento , Uréter/cirugía , Ureteroscopios/efectos adversos , Ureteroscopios/estadística & datos numéricos , Ureteroscopía/efectos adversos , Ureteroscopía/instrumentación , Ureteroscopía/estadística & datos numéricos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA