Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 236: 123934, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36894062

RESUMEN

This work demonstrates a facile and effective strategy for the preparation of a reduced graphene oxide/carboxymethylcellulose-polyaniline (RGO/CMC-PANI) hybrid film electrode. Specifically, through the hydrogen bonding interaction between -OH of CMC molecules and -NH2 of aniline monomer, PANI grows in an ordered manner on the surface of CMC, which effectively alleviates the structural collapse of PANI during the continuous charge/discharge process. After compounding with RGO, CMC-PANI bridges adjacent RGO sheets to form a complete conductive path, and opens the gap between RGO sheet layers to obtain fast ion channels. As a result, the RGO/CMC-PANI electrode exhibits excellent electrochemical performance. Moreover, an asymmetric supercapacitor was fabricated using RGO/CMC-PANI as the anode and Ti3C2Tx as the cathode. The results show that the device has a large specific capacitance of 450 mF cm-2 (81.8 F g-1) at 1 mA cm-2 and a high energy density of 140.6 µWh cm-2 at a power density of 749.9 µW cm-2. Besides, 87.3 % initial capacitance and 100 % good coulombic efficiency can be maintained even after 20,000 GCD cycles. Therefore, the device has a broad application prospect in the field of new-generation microelectronic energy storage.


Asunto(s)
Compuestos de Anilina , Carboximetilcelulosa de Sodio , Electrodos
2.
J Colloid Interface Sci ; 645: 974-984, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37179195

RESUMEN

Recent studies have shown that Ti-based MXene has great potential for electrochemical energy storage applications, including Li-ion batteries and micro-supercapacitors. However, self-stacking and weak interlayer interactions lead to poor electrochemical properties. Herein, a simple one-step vacuum filtration method was used to prepare a MXene/carboxymethylcellulose/carbon nanotube (Ti3C2Tx/CMC/CNT) hybrid membrane. Due to the unique adhesion and flexibility of CMC, it can be interwoven with CNT to form an interconnected mesh structure, which on the one hand mitigates the self-aggregation of CNT, and on the other hand, the CNT entangled on the surface of CMC imparts its electrical conductivity. Moreover, the -OH of CMC can form hydrogen bonds with the reactive terminal groups (-O, -OH, -F) of Ti3C2Tx, resulting in the tight anchoring of CMC and CNT to Ti3C2Tx nanosheet layers and bridging adjacent Ti3C2Tx nanosheets to form a complete conductive pathway. As a result, the mechanical property test indicates that the Ti3C2Tx/CMC/CNT hybrid film could achieve a maximum tensile strength of 64.9 MPa. Furthermore, an asymmetric micro-supercapacitor (MSC) using Ti3C2Tx/CMC/CNT as the cathode and reduced graphene oxide/carboxymethylcellulose/polypyrrole (RGO/CMC/PPy) as the anode was fabricated, which exhibited a high energy density of 258.8 µWh cm-2 at a power density of 750 µW cm-2, and an ultra-long cycle life (93.2% capacitance retention after 15,000 GCD cycles). The simple and scalable preparation process makes this MSC device very promising for commercial electronics applications.

3.
Chem Asian J ; 18(22): e202300604, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37755367

RESUMEN

The shuttle effect of lithium-sulfur (Li-S) batteries and the poor conductivity of sulfur (S) and lithium polysulfide severely limit their practical applications. Currently, compounding carbon materials with S is one of the effective ways to solve this problem. Therefore, green, low-cost chestnut inner shell biochar (CISC) with graded porous structure was used as the S carrier in this experiment, and carbon nanotubes (CNTs) coating was employed as the S protective layer to improve the electrical conductivity and inhibit the shuttle effect. The results showed that the CISC prepared in this experiment had a relatively high specific surface area (1135.11 m2 g-1 ), and the S loading rate was as high as 65.72 %. The graded porous structure and high specific surface area of CISC can increase the loading rate of S and thus increase the battery capacity. Meanwhile, the naturally contained O and N elements can improve the chemisorption of S. The initial discharge capacity of the CISC@S/CNTs battery at 0.1 C is 967.3 mAh g-1 , and the capacity retention rate is 74.3 % after 500 cycles. The unique composite structure improves the battery's electrical conductivity, reduces the dissolution of polysulfides, and enhances the battery cycle stability.

4.
Int J Biol Macromol ; 251: 126430, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37604419

RESUMEN

As the requirements for wearable electronic devices continue to increase, the development of bendable and foldable supercapacitors is becoming critical. However, it is still challenging to design free-standing electrodes with flexibility and high electrical conductivity. Herein, using carboxymethylcellulose (CMC) as the biological template and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) as the electroactive material, a flexible CMC/PEDOT:PSS membrane with a cross-linked mesh structure was firstly synthesized by a facile in-situ polymerization and vacuum filtration process. Subsequently, the CMC/PEDOT:PSS membrane was further treated with dimethyl sulfoxide (DMSO) to remove the excess PSS, thereby enhancing their electrochemical performance. The results showed that the best performing hybrid membrane had good mechanical properties (tensile strength of 48.1 MPa) and high electrical conductivity (45.1 S cm-1). The assembled asymmetric supercapacitor (ASC) is capable of delivering an energy density of 181.9 µW h cm-2 at a power density of 750 µW cm-2 and maintains an initial capacitance of 93.4 % and a coulombic efficiency of 100 % after 10,000 GCD cycles, demonstrating an ultra-long cycle life. Moreover, good electrochemical properties can be retained even in the bent and folded state. Therefore, the hybrid membrane electrode with both flexibility and high electrochemical performance has great potential for application in wearable electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA