Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mol Genet ; 27(9): 1593-1607, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29474575

RESUMEN

TDP-43 is a nuclear RNA-binding protein whose cytoplasmic accumulation is the pathological hallmark of amyotrophic lateral sclerosis (ALS). For a better understanding of this devastating disorder at the molecular level, it is important to identify cellular pathways involved in the clearance of detrimental TDP-43. Using a yeast model system, we systematically analyzed to which extent TDP-43-triggered cytotoxicity is modulated by conserved lysosomal clearance pathways. We observed that the lysosomal fusion machinery and the endolysosomal pathway, which are crucial for proper lysosomal function, were pivotal for survival of cells exposed to TDP-43. Interestingly, TDP-43 itself interfered with these critical TDP-43 clearance pathways. In contrast, autophagy played a complex role in this process. It contributed to the degradation of TDP-43 in the absence of endolysosomal pathway activity, but its induction also enhanced cell death. Thus, TDP-43 interfered with lysosomal function and its own degradation via lysosomal pathways, and triggered lethal autophagy. We propose that these effects critically contribute to cellular dysfunction in TDP-43 proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Lisosomas/metabolismo , Autofagia/fisiología
2.
Mutagenesis ; 28(2): 145-51, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23221037

RESUMEN

The comet assay is increasingly used to measure the repair of various types of DNA damage. Modifications of the standard protocol have been introduced to determine the repair capacity of specific DNA repair pathways by the removal of pathway-specific DNA lesions. Recently, a cellular phenotype assay for nucleotide excision repair (NER) by quantifying the DNA strand breaks after in vitro challenge of peripheral blood mononucleated cells with benzo[a]pyrene diol epoxide (BPDE) in the presence or absence of the DNA polymerase inhibitor aphidicolin (APC) was developed (Vande Loock, K., Decordier, I., Ciardelli, R., Haumont, D. and Kirsch-Volders, M. (2010) An aphidicolin-block nucleotide excision repair assay measuring DNA incision and repair capacity. Mutagenesis, 25, 25-32). Individual repair capacity (RC) was defined as the amount of DNA damage induced by BPDE in the presence of APC minus the damage induced by BPDE and APC alone. This value should mainly reflect the incision capacity of the NER enzymes. Following this approach, we investigated the RC of cultured isolated peripheral blood mononuclear cells of nine donors in repeated experiments. We also performed the same experiments with peripheral whole blood cultures from these donors. Our results indicated considerable intra- and inter-individual variability and substantial differences between the RC of isolated mononuclear cells and whole blood from the same donor. Furthermore, the RC of unstimulated blood did not differ significantly from the repair capacity of stimulated blood but also showed considerable inter-individual variability. Altogether, our results suggest that there is still need for standardisation and validation of this assay before it can be reliably used in human biomonitoring studies.


Asunto(s)
Afidicolina/farmacología , Ensayo Cometa/métodos , Reparación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/toxicidad , Adolescente , Adulto , Benzo(a)pireno/toxicidad , Daño del ADN , Femenino , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Reproducibilidad de los Resultados , Adulto Joven
3.
Microb Cell ; 5(4): 212-214, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29611555

RESUMEN

The accumulation of protein aggregates in neurons is a typical pathological hallmark of the motor neuron disease amyotrophic lateral sclerosis (ALS) and of frontotemporal dementia (FTD). In many cases, these aggregates are composed of the 43 kDa TAR DNA-binding protein (TDP 43). Using a yeast model for TDP 43 proteinopathies, we observed that the vacuole (the yeast equivalent of lysosomes) markedly contributed to the degradation of TDP 43. This clearance occurred via TDP 43-containing vesicles fusing with the vacuole through the concerted action of the endosomal-vacuolar (or endolysosomal) pathway and autophagy. In line with its dominant role in the clearance of TDP 43, endosomal-vacuolar pathway activity protected cells from the detrimental effects of TDP 43. In contrast, enhanced autophagy contributed to TDP 43 cytotoxicity, despite being involved in TDP 43 degradation. TDP 43's interference with endosomal-vacuolar pathway activity may have two deleterious consequences. First, it interferes with its own degradation via this pathway, resulting in TDP 43 accumulation. Second, it affects vacuolar proteolytic activity, which requires endosomal-vacuolar trafficking. We speculate that the latter contributes to aberrant autophagy. In sum, we propose that ameliorating endolysosomal pathway activity enhances cell survival in TDP 43-associated diseases.

4.
Microb Cell ; 2(4): 136-138, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28357285

RESUMEN

Impaired protein degradation and mitochondrial dysfunction are believed to contribute to neurodegenerative disorders, including Alzheimer disease (AD). In patients suffering from non-hereditary AD, UBB+1, the frameshift variant of ubiquitin B, accumulated in neurons affected by neurofibrillary tangles, which is a pathological hallmark. We established a yeast model expressing high levels of UBB+1, and could demonstrate that UBB+1 interfered with both the ubiquitin-proteasome system (UPS) and mitochondrial function. More precisely, UBB+1 promoted the mitochondrion-localized production of the basic amino acids arginine, ornithine, and lysine, which we identified as the decisive toxic event culminating in apoptosis. Inducing the UPS activity at mitochondria prevented the lethal basic amino acid accumulation and avoided UBB+1-triggered cell loss. The arginine/ornithine metabolism is altered in brains of AD patients, and VMS1, the mitochondrion-specific UPS component, co-existed with UBB+1 in neurofibrillary tangles. Therefore, our data suggest that aberrant basic amino acid synthesis is a crucial link between UPS dysfunction and mitochondrial damage during AD progression.

5.
Cell Rep ; 10(9): 1557-1571, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25753421

RESUMEN

Neuronal accumulation of UBB+1, a frameshift variant of ubiquitin B, is a hallmark of Alzheimer's disease (AD). How UBB+1 contributes to neuronal dysfunction remains elusive. Here, we show that in brain regions of AD patients with neurofibrillary tangles UBB+1 co-exists with VMS1, the mitochondrion-specific component of the ubiquitin-proteasome system (UPS). Expression of UBB+1 in yeast disturbs the UPS, leading to mitochondrial stress and apoptosis. Inhibiting UPS activity exacerbates while stimulating UPS by the transcription activator Rpn4 reduces UBB+1-triggered cytotoxicity. High levels of the Rpn4 target protein Cdc48 and its cofactor Vms1 are sufficient to relieve programmed cell death. We identified the UBB+1-induced enhancement of the basic amino acids arginine, ornithine, and lysine at mitochondria as a decisive toxic event, which can be reversed by Cdc48/Vms1-mediated proteolysis. The fact that AD-induced cellular dysfunctions can be avoided by UPS activity at mitochondria has potentially far-reaching pathophysiological implications.

6.
J Histochem Cytochem ; 61(4): 306-12, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23321776

RESUMEN

Since being established in 1963, the murine fibroblast cell line NIH 3T3 has been used in thousands of studies. NIH 3T3 immortalized spontaneously and became tetraploid shortly after its establishment. Here we report the first molecular cytogenetic characterization of NIH 3T3 using fluorescence in situ hybridization based multicolor banding (mcb). Overall, a complex rearranged karyotype presenting 16 breakpoints was characterized. Also it was possible to deduce the resulting gains and losses of copy numbers in NIH 3T3. Overall, only 1.8% of the NIH 3T3 genome is disome, 26.2% tri-, 60% tetra-, 10.8% quinta-, and 1.2% hexasome. Strikingly, the cell line gained only 4 derivative chromosomes since its first cytogenetic description in 1989. An attempt to align the observed imbalances of the studied cell line with their homologous regions in humans gave the following surprising result: NIH 3T3 shows imbalances as typically seen in human solid cancers of ectodermal origin.


Asunto(s)
Bandeo Cromosómico , Análisis Citogenético , Animales , Genoma , Hibridación Fluorescente in Situ , Ratones , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA