Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chemistry ; 24(1): 196-205, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29027753

RESUMEN

ß-Li10 P4 N10 and Li13 P4 N10 X3 with X=Cl, Br have been synthesized from mixtures of P3 N5 , Li3 N, LiX, LiPN2 , and Li7 PN4 at temperatures below 850 °C. ß-Li10 P4 N10 is the low-temperature polymorph of α-Li10 P4 N10 and crystallizes in the trigonal space group R3. It is made up of non-condensed [P4 N10 ]10- T2 supertetrahedra, which are arranged in sphalerite-analogous packing. Li13 P4 N10 X3 (X=Cl, Br) crystallizes in the cubic space group Fm3‾m . Both isomorphic compounds comprise adamantane-type [P4 N10 ]10- , Li+ ions, and halides, which form octahedra. These octahedra build up a face-centered cubic packing, whose tetrahedral voids are occupied by the [P4 N10 ]10- ions. The crystal structures have been elucidated from X-ray powder diffraction data and corroborated by EDX measurements, solid-state NMR, and FTIR spectroscopy. Furthermore, we have examined the phase transition between α- and ß-Li10 P4 N10 . To confirm the ionic character, the migration pathways of the Li+ ions have been evaluated and the ion conductivity and its temperature dependence have been determined by impedance spectroscopy. XPS measurements have been carried out to analyze the stability with respect to Li metal.

2.
ACS Appl Mater Interfaces ; 10(26): 22580-22590, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29878745

RESUMEN

Lithium titanate Li4Ti5O12 (LTO) is regarded as a promising alternative to carbon-based anodes in lithium-ion batteries. Despite its stable structural framework, LTO exhibits disadvantages, such as the sluggish lithium-ion diffusion and poor electronic conductivity. To modify the performance of LTO as an anode material, nanosizing constitutes a promising approach and the impact is studied here by a systematical experimental approach. Phase-pure polycrystalline LTO nanoparticles (NPs) with high crystallinity and crystallite sizes ranging from 4 to 12 nm are prepared by an optimized solvothermal protocol and characterized by several state-of-the-art technologies, including high-resolution transmission electron microscopy, X-ray diffraction (XRD), pair distribution function (PDF) analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. Through a wide array of electrochemical analyses, including charge/discharge profiles, cyclic voltammetry, and electrochemical impedance spectroscopy, a crystallite size of approx. 7 nm is identified as the optimum particle size. Such NPs exhibit as good reversible capacity as the ones with larger crystallite sizes but with a more pronounced interfacial charge storage. By decreasing the crystallite size to about 4 nm, the interfacial charge storage increases remarkably, however resulting in a loss of reversible capacity. An in-depth structural characterization using the PDF obtained from synchrotron XRD data indicates an enrichment in Ti for NPs with the small crystallite sizes, and this Ti-rich structure enables a higher Li storage. The electrochemical characterization confirms this result and furthermore points to a plausible reason as to why a higher Li storage in very small nanoparticles (4 nm) results in a loss in the reversible capacity.

3.
ACS Appl Mater Interfaces ; 10(26): 22226-22236, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29877698

RESUMEN

All-solid-state batteries (ASSBs) show great potential for providing high power and energy densities with enhanced battery safety. While new solid electrolytes (SEs) have been developed with high enough ionic conductivities, SSBs with long operational life are still rarely reported. Therefore, on the way to high-performance and long-life ASSBs, a better understanding of the complex degradation mechanisms, occurring at the electrode/electrolyte interfaces is pivotal. While the lithium metal/solid electrolyte interface is receiving considerable attention due to the quest for high energy density, the interface between the active material and solid electrolyte particles within the composite cathode is arguably the most difficult to solve and study. In this work, multiple characterization methods are combined to better understand the processes that occur at the LiCoO2 cathode and the Li10GeP2S12 solid electrolyte interface. Indium and Li4Ti5O12 are used as anode materials to avoid the instability problems associated with Li-metal anodes. Capacity fading and increased impedances are observed during long-term cycling. Postmortem analysis with scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy show that electrochemically driven mechanical failure and degradation at the cathode/solid electrolyte interface contribute to the increase in internal resistance and the resulting capacity fading. These results suggest that the development of electrochemically more stable SEs and the engineering of cathode/SE interfaces are crucial for achieving reliable SSB performance.

4.
ACS Appl Mater Interfaces ; 9(27): 22799-22807, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28367631

RESUMEN

Mesostructured nonsilicate materials, particularly mixed-metal oxides, are receiving much attention in recent years because of their potential for numerous applications. Via the polymer-templating method, perovskite-type lanthanum strontium manganese oxide (La1-xSrxMnO3, LSMO, with x ≈ 0.15 to 0.30) with a continuous 3D cubic network of 23 nm pores is prepared in thin-film form for the first time. Characterization results from grazing incidence X-ray scattering, X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and electron microscopy and tomography show that the dip-coated sol-gel-derived films are of high quality in terms of both composition and morphology and that they are stable to over 700 °C. Magnetic and magnetotransport measurements demonstrate that the material with the highest strontium concentration is ferromagnetic at room temperature and exhibits metallic resistivity behavior below 270 K. Besides, it behaves differently from epitaxial layers (e.g., enhanced low-field magnetoresistance effect). It is also shown that carriers (electrons and holes) can be induced into the polymer-templated mesostructured LSMO films via capacitive double-layer charging. This kind of electrostatic doping utilizing ionic liquid gating causes large relative changes in magnetic susceptibility at room temperature and is a viable technique to tune the magnetic phase diagram in situ.

5.
ACS Appl Mater Interfaces ; 9(21): 17835-17845, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28481084

RESUMEN

All-solid-state lithium-ion batteries have the potential to become an important class of next-generation electrochemical energy storage devices. However, for achieving competitive performance, a better understanding of the interfacial processes at the electrodes is necessary for optimized electrode compositions to be developed. In this work, the interfacial processes between the solid electrolyte (Li10GeP2S12) and the electrode materials (In/InLi and LixCoO2) are monitored using impedance spectroscopy and galvanostatic cycling, showing a large resistance contribution and kinetic hindrance at the metal anode. The effect of different fractions of the solid electrolyte in the composite cathodes on the rate performance is tested. The results demonstrate the necessity of a carefully designed composite microstructure depending on the desired applications of an all-solid-state battery. While a relatively low mass fraction of solid electrolyte is sufficient for high energy density, a higher fraction of solid electrolyte is required for high power density.

6.
ACS Appl Mater Interfaces ; 9(41): 35888-35896, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28937736

RESUMEN

All-solid-state batteries (SSBs) have recently attracted much attention due to their potential application in electric vehicles. One key issue that is central to improve the function of SSBs is to gain a better understanding of the interfaces between the material components toward enhancing the electrochemical performance. In this work, the interfacial properties of a carbon-containing cathode composite, employing Li10GeP2S12 as the solid electrolyte, are investigated. A large interfacial charge-transfer resistance builds up upon the inclusion of carbon in the composite, which is detrimental to the resulting cycle life. Analysis by X-ray photoelectron spectroscopy reveals that carbon facilitates faster electrochemical decomposition of the thiophosphate solid electrolyte at the cathode/solid electrolyte interface-by transferring the low chemical potential of lithium in the charged state deeper into the solid electrolyte and extending the decomposition region. The occurring accumulation of highly oxidized sulfur species at the interface is likely responsible for the large interfacial resistances and aggravated capacity fading observed.

7.
Nanoscale ; 8(29): 13944-53, 2016 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-27009374

RESUMEN

Hydrous RuO2 reveals excellent performance both as a supercapacitor and as a heterogeneous oxidation catalyst. Molecular understanding of these processes needs, however, a model system with preferably low structural and morphological complexity. This goal is partly accomplished here by using single crystalline Ru(0001) as a template on which hydrous RuO2 is electrochemically formed. The hydrous RuO2 layers on Ru(0001) and their temperature induced transformation under ultra high vacuum (UHV) conditions are comprehensively characterized by scanning electron microscopy and X-ray photoemission spectroscopy. The hydrous RuO2 layer grows with an intricate morphology governed by the presence of step bunching regions of the Ru(0001) surface. Upon annealing to 200 °C in UHV the hydrous RuO2 layer transforms mostly into flat metallic Ru islands and occasionally into (100) and (111) oriented RuO2 particles aligned along the high symmetry direction of Ru(0001).

8.
ACS Appl Mater Interfaces ; 8(41): 28216-28224, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27677413

RESUMEN

The interfacial stability of solid electrolytes at the electrodes is crucial for an application of all-solid-state batteries and protected electrodes. For instance, undesired reactions between sodium metal electrodes and the solid electrolyte form charge transfer hindering interphases. Due to the resulting large interfacial resistance, the charge transfer kinetics are altered and the overvoltage increases, making the interfacial stability of electrolytes the limiting factor in these systems. Driven by the promising ionic conductivities of Na3PS4, here we explore the stability and viability of Na3PS4 as a solid electrolyte against metallic Na and compare it to that of Na-ß″-Al2O3 (sodium ß-alumina). As expected, Na-ß″-Al2O3 is stable against sodium, whereas Na3PS4 decomposes with an increasing overall resistance, making Na-ß″-Al2O3 the electrolyte of choice for protected sodium anodes and all-solid-state batteries.

9.
ACS Appl Mater Interfaces ; 8(16): 10274-82, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-26867115

RESUMEN

Nitrogen-rich carbon with both a turbostratic microstructure and meso/macroporosity was prepared by hard templating through pyrolysis of a tricyanomethanide-based ionic liquid in the voids of a silica monolith template. This multifunctional carbon not only is a promising anode candidate for long-life lithium-ion batteries but also shows favorable properties as anode and cathode host material owing to a high nitrogen content (>8% after carbonization at 900 °C). To demonstrate the latter, the hierarchical carbon was melt-infiltrated with sulfur as well as coated by atomic layer deposition (ALD) of anatase TiO2, both of which led to high-quality nanocomposites. TiO2 ALD increased the specific capacity of the carbon while maintaining high Coulombic efficiency and cycle life: the composite exhibited stable performance in lithium half-cells, with excellent recovery of low rate capacities after thousands of cycles at 5C. Lithium-sulfur batteries using the sulfur/carbon composite also showed good cyclability, with reversible capacities of ∼700 mA·h·g(-1) at C/5 and without obvious decay over several hundred cycles. The present results demonstrate that nitrogen-rich carbon with an interconnected multimodal pore structure is very versatile and can be used as both active and inactive electrode material in high-performance lithium-based batteries.

10.
Nat Chem ; 8(5): 426-34, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27102676

RESUMEN

The discharging and charging of batteries require ion transfer across phase boundaries. In conventional lithium-ion batteries, Li(+) ions have to cross the liquid electrolyte and only need to pass the electrode interfaces. Future high-energy batteries may need to work as hybrids, and so serially combine a liquid electrolyte and a solid electrolyte to suppress unwanted redox shuttles. This adds new interfaces that might significantly decrease the cycling-rate capability. Here we show that the interface between a typical fast-ion-conducting solid electrolyte and a conventional liquid electrolyte is chemically unstable and forms a resistive solid-liquid electrolyte interphase (SLEI). Insights into the kinetics of this new type of interphase are obtained by impedance studies of a two-chamber cell. The chemistry of the SLEI, its growth with time and the influence of water impurities are examined by state-of-the-art surface analysis and depth profiling.

11.
Mater Sci Eng C Mater Biol Appl ; 58: 78-87, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26478289

RESUMEN

Graft-associated infections entirely determine the short-term patency of polyethylene terephthalate PET cardiovascular graft. We attempted to enzymatically inhibit the initial bacterial adhesion to PET grafts using lysozyme. Lysozyme was covalently immobilized onto woven and knitted forms of crimped PET grafts by the end-point method. Our figures of merit revealed lysozyme immobilization yield of 15.7 µg/cm(2), as determined by the Bradford assay. The activity of immobilized lysozyme on woven and knitted PET manifested 58.4% and 55.87% using Micrococcus lysodeikticus cells, respectively. Noteworthy, the adhesion of vein catheter-isolated Staphylococcus epidermidis decreased by 6- to 8-folds and of Staphylococcus aureus by 11- to 12-folds, while the Gram-negative Escherichia coli showed only a decrease by 3- to 4-folds. The anti-adhesion efficiency was specific for bacterial cells and no significant effect was observed on adhesion and growth of L929 cells. In conclusion, immobilization of lysozyme onto PET grafts can inhibit the graft-associated infection.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Enzimas Inmovilizadas/química , Muramidasa/química , Tereftalatos Polietilenos/química , Animales , Bacterias/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Biopelículas/efectos de los fármacos , Línea Celular , Ratones , Muramidasa/farmacología , Propiedades de Superficie
12.
Mater Sci Eng C Mater Biol Appl ; 43: 538-46, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25175248

RESUMEN

Short-term patency of polyethylene terephthalate (PET) cardiovascular grafts is determined mainly by the inherent thrombogenicity and improper endothelialization following grafts implantation. The aim of the present study was to immobilize heparin to develop thrombus resistant grafts. Additionally, collagen was co-immobilized to enhance the host cell compatibility. The synthetic woven and knitted forms of crimped PET grafts were surface modified by Denier reduction to produce functional carboxyl groups. The produced groups were used as anchor sites for covalent immobilization of heparin or co-immobilization of heparin/collagen by the end-point method. The modified surface was characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The biological activity of immobilized molecules was investigated in vitro using direct blood coagulation test, and "platelet deposition under flow condition. Furthermore, the biocompatibility of modified grafts with host cells was assessed using L929 cell as model. All modified grafts showed significant resistance against fibrin and clot formation. The number of deposited platelets on heparin-immobilized woven and knitted grafts obviously decreased by 3 fold and 2.8 fold per unit surface area respectively, while the heparin/collagen co-immobilized grafts showed only a decrease by 1.7 and 1.8 fold compared to unmodified PET. Heparin-immobilized grafts reported no significant effect on L929 cells adhesion and growth (P>0.05), conversely, collagen co-immobilization considerably increased cell adhesion almost ~1.3 fold and 2 fold per unit surface area for woven and knitted grafts respectively. Our results emphasize that immobilization of heparin minimized the inherent thrombogenicity of the PET grafts. The simultaneous co-immobilization of collagen supported host cell adhesion and growth required for the grafts biocompatibility.


Asunto(s)
Materiales Biocompatibles Revestidos , Colágeno/administración & dosificación , Heparina/administración & dosificación , Tereftalatos Polietilenos , Trombosis/prevención & control , Injerto Vascular , Humanos , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier
13.
Biointerphases ; 8(1): 31, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24706141

RESUMEN

The determination of the spatially resolved calcium distribution and concentration in bone is essential for the assessment of bone quality. It enables the diagnosis and elucidation of bone diseases, the course of bone remodelling and the assessment of bone quality at interfaces to implants. With time-of-flight secondary ion mass spectrometry (ToF-SIMS) the calcium distribution in bone cross sections is mapped semi-quantitatively with a lateral resolution of up to 1 µm. As standards for the calibration of the ToF-SIMS data calcium hydroxyapatite collagen scaffolds with different compositions were synthesized. The standards were characterised by loss of ignition, x-ray diffractometry (XRD) and x-ray photoelectron spectroscopy (XPS). The secondary ion count rate for calcium and the calcium content of the standards show a linear dependence. The obtained calibration curve is used for the quantification of the calcium content in the bone of rats. The calcium concentration within an animal model for osteoporosis induction is monitored. Exemplarily the calcium content of the bones was quantified by XPS for validation of the results. Furthermore a calcium mass image is compared with an XPS image to demonstrate the better lateral resolution of ToF-SIMS which advances the locally resolved quantification of the calcium content.


Asunto(s)
Huesos/química , Espectrometría de Masa de Ion Secundario/métodos , Animales , Calcio , Bovinos , Femenino , Espectroscopía de Fotoelectrones , Ratas , Ratas Sprague-Dawley
14.
Acta Biomater ; 9(11): 9201-10, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23891813

RESUMEN

Low temperature metal oxidation induced by plasma in the absence of liquid electrolytes can be useful for the surface preparation of orthopedic devices since residues from these may be harmful and need to be removed before implantation. In this study the oxidation of Ti-40Nb for biomedical application was achieved by employing an inductively coupled radio frequency oxygen plasma. The correlation between the growth mode of the surface oxide and the electric conductivity ratio of the plasma and the oxide phase were studied by varying the sample temperature, oxygen gas pressure and additional bias potential. The plasma treated samples were characterised by confocal laser microscopy, SEM, EBSD, XPS, TEM and ToF-SIMS. The surface energy was determined by contact angle measurements using the Owens-Wendt-Rabel-Kaelble method. Well adhering oxide layers consisting of TiO2 and Nb2O5 with thicknesses between 50 and 150 nm were obtained. Surface roughness values and microstructure indicate that the growth mode of the oxide can be well controlled by the sample temperature and oxygen gas pressure. At temperatures above 450°C a migration of Ti ions towards the surface controls the growth process. A bias potential higher than +50 V causes rough and defective surfaces with high surface energies.


Asunto(s)
Aleaciones/química , Técnicas Electroquímicas/métodos , Implantes Experimentales , Gases em Plasma/química , Ondas de Radio , Cristalización , Microscopía Electrónica de Rastreo , Imagen Óptica , Oxidación-Reducción , Óxidos/química , Espectroscopía de Fotoelectrones , Propiedades de Superficie , Termodinámica
15.
Chem Commun (Camb) ; 48(37): 4471-3, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22460231

RESUMEN

Combining sol-gel chemistry with polymer templating strategies enables production of CuFe(2)O(4) thin films with both an ordered cubic network of 17 nm diameter pores and tunable spinel domain sizes. These nanocrystalline materials contain only minor structural defects with λ = 0.85 ± 0.02 and exhibit multiple functionalities, including superparamagnetic behavior (T(B)≈ 310 K) and redox- and photoactivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA