Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Rapid Commun Mass Spectrom ; 35(15): e9123, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33955039

RESUMEN

RATIONALE: Detection of 3-quinuclidinol (3Q), a marker for the chemical warfare agent 3-quinuclidinyl benzilate, is very difficult by gas chromatography-mass spectrometry (GC/MS), providing low, broad signals even when analyzed in isolated form. Therefore, a method that can convert 3Q into a substrate with enhanced detectability by GC/MS would be an important tool for its analysis. METHODS: 2,2,2-Trichloroethoxycarbonyl chloride (TrocCl) was used in the derivatization of 3Q in three different soils of varying composition and total organic content (Virginia type A soil, Nebraska EPA standard soil and Ottawa sand) when present at a 10 µg g-1 concentration in each. A direct derivatization protocol and one involving the pre-extraction of the analyte were evaluated for their individual efficiencies and subsequent analysis using electron ionization GC/MS. RESULTS: The practical derivatization of 3Q, when present at low levels (10 µg g-1 ) in three different soil matrices, was found to be rapid (1 h) and to take place smoothly at ambient temperature (and as low as 4°C). The method detection limit was determined to be 30 ng mL-1 for the Virginia type A soil, 49 ng mL-1 for the Nebraska EPA standard soil and 72 ng mL-1 for the Ottawa sand sample. CONCLUSIONS: An expedient and practical derivatization method for 3Q, a chemical warfare degradation product difficult to detect by GC/MS, has been realized using trichloroethyl chloroformate. The reaction provides 3Q-Troc, a derivative with better detectability than 3Q by electron ionization GC/MS such as peak sharpness and a unique mass spectrum for its unambiguous identification.

2.
Anal Bioanal Chem ; 413(12): 3145-3151, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33770208

RESUMEN

A derivatization protocol based on the acylation of pinacolyl alcohol (PA), an important marker for the nerve agent soman, is presented. The procedure provides a convenient means of detecting, by gas chromatography-mass spectrometry (GC-MS), PA when present at a low concentration in a complex glycerol/alcohol-rich matrix. While there are only two reports describing the specific analysis of PA in matrices at low concentrations, the protocol described herein represents the first of its kind in the analysis of PA in a highly reactive matrix. Two alternative paths for the protocol's execution are presented. The first involves the direct derivatization of the PA with either acetyl or benzoyl chloride; both reactions yield ester products with significantly different retention times than those of the interferences of the reactive glycerol-rich matrix and in areas of the GC-chromatogram featuring lower levels of matrix interferences. A second procedure involved an initial diethyl ether/aqueous extraction of the matrix; while the extraction was found to substantially remove many of the hydrophilic matrix components and improve the overall derivatization, it also led to some loss of PA available for the derivatization. Both protocols were applied to the successful derivatization and analysis of PA by GC-MS when present at a 5 µg.mL-1 concentration in a glycerol-rich matrix sample administered during the 48th Proficiency Test administered by the Organisation for the Prohibition of Chemical Weapons (OPCW).

3.
Molecules ; 26(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361784

RESUMEN

The field of gas chromatography-mass spectrometry (GC-MS) in the analysis of chemical warfare agents (CWAs), specifically those involving the organophosphorus-based nerve agents (OPNAs), is a continually evolving and dynamic area of research. The ever-present interest in this field within analytical chemistry is driven by the constant threat posed by these lethal CWAs, highlighted by their use during the Tokyo subway attack in 1995, their deliberate use on civilians in Syria in 2013, and their use in the poisoning of Sergei and Yulia Skripal in Great Britain in 2018 and Alexei Navalny in 2020. These events coupled with their potential for mass destruction only serve to stress the importance of developing methods for their rapid and unambiguous detection. Although the direct detection of OPNAs is possible by GC-MS, in most instances, the analytical chemist must rely on the detection of the products arising from their degradation. To this end, derivatization reactions mainly in the form of silylations and alkylations employing a vast array of reagents have played a pivotal role in the efficient detection of these products that can be used retrospectively to identify the original OPNA.


Asunto(s)
Agentes Nerviosos/análisis , Organofosfatos/análisis , Compuestos Organofosforados/análisis , Compuestos Organotiofosforados/análisis , Sarín/análisis , Soman/análisis , Alquilación , Fluorobencenos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Hidrólisis , Metilación , Agentes Nerviosos/química , Organofosfatos/química , Compuestos Organofosforados/química , Compuestos Organotiofosforados/química , Sarín/química , Soman/química
4.
Anal Bioanal Chem ; 407(13): 3539-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25796530

RESUMEN

A derivatization method that employs diethyl (bromodifluoromethyl) phosphonate (DBDFP) to efficiently tag the endocrine disruptor pentachlorophenol (PCP) and other chlorinated phenols (CPs) along with their reliable detection and analysis by NMR is presented. The method accomplishes the efficient alkylation of the hydroxyl group in CPs with the difluoromethyl (CF2H) moiety in extremely rapid fashion (5 min), at room temperature and in an environmentally benign manner. The approach proved successful in difluoromethylating a panel of 18 chlorinated phenols, yielding derivatives that displayed unique (1)H, (19)F, and (13)C NMR spectra allowing for the clear discrimination between isomerically related CPs. Due to its biphasic nature, the derivatization can be applied to both aqueous and organic mixtures where the analysis of CPs is required. Furthermore, the methodology demonstrates that PCP along with other CPs can be selectively derivatized in the presence of other various aliphatic alcohols, underscoring the superiority of the approach over other general derivatization methods that indiscriminately modify all analytes in a given sample. The present work demonstrates the first application of NMR on the qualitative analysis of these highly toxic and environmentally persistent species.


Asunto(s)
Clorofenoles/análisis , Clorofenoles/química , Disruptores Endocrinos/análisis , Disruptores Endocrinos/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Radioisótopos de Flúor/análisis , Radioisótopos de Flúor/química , Marcaje Isotópico/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Rapid Commun Mass Spectrom ; 28(20): 2217-21, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25178726

RESUMEN

RATIONALE: In this work, we expand the use of in situ activation of chloro(dimethyl)phenylsilane using N-methylimidazole (NMI) for the effective derivatization of ß-aminoethyl alcohols. Due to its enhanced nucleophilic character, NMI is expected to act as an efficient activator in these reactions. METHODS: The derivatization of a panel of ß-aminoethyl alcohols was accomplished by reacting the analyte with chloro(dimethyl)phenylsilane in the presence of either NMI or pyridine. After the addition of chloro(dimethyl)phenylsilane, the vials were gently tumbled for 1 h at ambient temperature. The phenyldimethylsilyl derivatives were identified using gas chromatography/electron ionization mass spectrometry (GC/EI-MS). RESULTS: A total of ten ß-aminoethyl alcohols were successfully derivatized via in situ activation of chloro(dimethyl)-phenylsilane with NMI. Derivatization with NMI was significantly more efficient than with pyridine by a factor of 3-6 for the studied alcohols. The derivatizations in the presence of NMI were found to occur in just 1 h and were conveniently executed at ambient temperature. CONCLUSIONS: The use of the nitrogenous base NMI in order to activate chloro(dimethyl)phenylsilane for the efficient silylation of a panel of ß-aminoethyl alcohols has been demonstrated. The present work shows that NMI is an efficient base for the smooth derivatization of these types of alcohols. Furthermore, the installation of the bulky PDMS group onto these alcohols adds to the certainty that this is a viable approach for the installation of the more commonly employed, trimethylsilyl group. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.

6.
Anal Bioanal Chem ; 406(21): 5231-4, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24481624

RESUMEN

A derivatization procedure for the qualitative gas chromatography-mass spectrometry (GC-MS) analysis of pinacolyl alcohol (PA) that employs phenyldimethylchlorosilane (PhDMClS) and the promoter N-methylimidazole is described. While PA, underivatized, can be detected using conventional gas chromatographic methods, its polarity and low boiling point make its detection in complex matrices challenging. The silylation procedure described herein generates a PA-derivative exhibiting an increased on-column retention time, thus shifting its GC-MS signal away from commonly encountered, volatile, interfering analytes. Derivatized PA could be distinguished from other PhDMClS-derivatized isomeric alcohols by its unique retention time and mass spectrum. The derivatization was demonstrated to perform well in the GC-MS analysis and identification of PA in samples from Proficiency Tests administered by the Organisation for the Prohibition of Chemical Weapons (OPCW).


Asunto(s)
Sustancias para la Guerra Química/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Hexanoles/análisis , Silanos/química , Biotransformación , Hexanoles/química , Humanos , Técnicas In Vitro , Ensayos de Aptitud de Laboratorios , Límite de Detección , Soman/metabolismo
7.
J Forensic Sci ; 68(6): 2138-2152, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37568257

RESUMEN

Detection of illicit drugs in the environment, particularly in soils, often suggests the present or past location of a clandestine production center for these substances. Thus, development of efficient methods for the analysis and detection of these chemicals is of paramount importance in the field of chemical forensics. In this work, a method involving the extraction and retrospective confirmation of fentanyl, acetylfentanyl, thiofentanyl, and acetylthiofentanyl using trichloroethoxycarbonylation chemistry in a high clay-content soil is presented. The soil was spiked separately with each fentanyl at two concentrations (1 and 10 µg/g) and their extraction accomplished using ethyl acetate and aqueous NH4 OH (pH ~ 11.4) with extraction recoveries ranging from ~56% to 82% for the high-concentration (10 µg/g) samples while ranging from ~68% to 83% for the low-concentration (1 µg/g) samples. After their extraction, residues containing each fentanyl were reacted with 2,2,2-trichloroethoxycarbonyl chloride (Troc-Cl) to generate two unique and predictable products from each opioid that can be used to retrospectively confirm their presence and identity using EI-GC-MS. The method's limit of detection (MDL/LOD) for Troc-norfentanyl and Troc-noracetylfentanyl were estimated to be 29.4 and 31.8 ng/mL in the organic extracts. In addition, the method's limit of quantitation for Troc-norfentanyl and Troc-noracetylfentanyl were determined to be 88.2 and 95.5 ng/mL, respectively. Collectively, the results presented herein strengthen the use of chloroformate chemistry as an additional chemical tool to confirm the presence of these highly toxic and lethal substances in the environment.


Asunto(s)
Electrones , Suelo , Cromatografía de Gases y Espectrometría de Masas/métodos , Arcilla , Estudios Retrospectivos , Fentanilo/análisis
8.
Sci Rep ; 12(1): 1401, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082365

RESUMEN

The efficient methylation of a panel of five industrial and environmentally-relevant chlorophenols (CPs) employing trimethyloxonium tetrafluoroborate (TMO) for their qualitative detection and identification by electron impact gas chromatography-mass spectrometry (EI-GC-MS) is presented. The protocol's execution is simple and smoothly converts the phenols into their O-methylated counterparts conveniently at ambient temperature. The efficiency of two versions of the protocol was successfully tested in their ability to simultaneously derivatize five CPs (2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol and triclosan) in six distinct, separate soil matrices (Nebraska EPA standard soil, Virginia Type A soil, Ottawa sand, Baker sand, Silt and Georgia EPA standard soil) when present at low levels (~ 10 µgg-1). The first version involves the direct derivatization of the spiked soils with the methylating salt while the second one involves an initial soil extraction step of the CPs followed by methylation. The MDL values for each methylated CP were determined and lower values were found (4.1-13.2 ng.mL-1) for both sand matrices (Ottawa and Baker) as well as for the Georgia EPA standard soil, while larger values (8.2-21.8 ng.mL-1) were found for the Virginia Type soil, Nebraska EPA standard soil and Silt. The presented protocol offers a safer and more practical alternative to the universally employed diazomethane method and can be readily applicable to matrices other than soils. Furthermore, the protocols described herein may find applicability to the methylation of other analytes bearing acidic protons.

9.
Sci Rep ; 12(1): 21299, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494565

RESUMEN

The use of benzyl trichloroacetimidates for the benzylation of phosphonic acid nerve agent markers under neutral, basic, and slightly acidic conditions is presented. The benzyl-derived phosphonic acids were detected and analyzed by Electron Ionization Gas Chromatography-Mass Spectrometry (EI-GC-MS). The phosphonic acids used in this work included ethyl-, cyclohexyl- and pinacolyl methylphosphonic acid, first pass hydrolysis products from the nerve agents ethyl N-2-diisopropylaminoethyl methylphosphonothiolate (VX), cyclosarin (GF) and soman (GD) respectively. Optimization of reaction parameters for the benzylation included reaction time and solvent, temperature and the effect of the absence or presence of catalytic acid. The optimized conditions for the derivatization of the phosphonic acids specifically for their benzylation, included neutral as well as catalytic acid (< 5 mol%) and benzyl 2,2,2-trichloroacetimidate in excess coupled to heating the mixture to 60 °C in acetonitrile for 4 h. While the neutral conditions for the method proved to be efficient for the preparation of the p-methoxybenzyl esters of the phosphonic acids, the acid-catalyzed process appeared to provide much lower yields of the products relative to its benzyl counterpart. The method's efficiency was tested in the successful derivatization and identification of pinacolyl methylphosphonic acid (PMPA) as its benzyl ester when present at a concentration of ~ 5 µg/g in a soil matrix featured in the Organisation for the Prohibition of Chemical Weapons (OPCW) 44th proficiency test (PT). Additionally, the protocol was used in the detection and identification of PMPA when spiked at ~ 10 µg/mL concentration in a fatty acid-rich liquid matrix featured during the 38th OPCW-PT. The benzyl derivative of PMPA was partially corroborated with the instrument's internal NIST spectral library and the OPCW central analytical database (OCAD v.21_2019) but unambiguously identified through comparison with a synthesized authentic standard. The method's MDL (LOD) values for the benzyl and the p-methoxybenzyl pinacolyl methylphosphonic acids were determined to be 35 and 63 ng/mL respectively, while the method's Limit of Quantitation (LOQ) was determined to be 104 and 189 ng/mL respectively in the OPCW-PT soil matrix evaluated.


Asunto(s)
Sustancias para la Guerra Química , Agentes Nerviosos , Agentes Nerviosos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Ácidos Fosforosos/química , Electrones , Suelo/química , Sustancias para la Guerra Química/análisis
10.
PLoS One ; 17(11): e0275931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36322521

RESUMEN

Electron Impact Gas Chromatography-Mass Spectrometry (EI-GC-MS) and High Resolution Liquid Chromatography-Mass Spectrometry (HR-LC-MS) have been used in the analysis of products arising from the trichloroethoxycarbonylation of fentanyl and acetylfentanyl in urine and plasma matrices. The method involves the initial extraction of both synthetic opioids separately from the matrices followed by detection of the unique products that arise from their reaction with 2,2,2-trichloroethoxycarbonyl chloride (Troc-Cl), namely Troc-norfentanyl and Troc-noracetylfentanyl. The optimized protocol was successfully evaluated for its efficacy at detecting these species formed from fentanyl and acetylfentanyl when present at low and high levels in urine (fentanyl: 5 and 10 ng/mL and acetylfentanyl: 20 and 100 ng/mL) and plasma (fentanyl: 10 and 20 ng/mL and acetylfentanyl: 50 and 200 ng/mL), values that reflect levels reported in overdose victims. The HR-LC-MS method's LOQ (limit of quantitation) for the Troc-norfentanyl and Troc-noracetylfentanyl products was determined to be ~10 ng/mL for both species. Even though the superiority in the detection of these species by HR-LC-MS over EI-GC-MS, the latter method proved to be important in the detection of the second product from the reaction, namely 2-phenylethyl chloride that is crucial in the determination of the original opioid. This observation highlights the importance of using complimentary analytical techniques in the analysis of a sample, whether biological or environmental in nature. The method herein serves as a complementary, qualitative confirmation for the presence of a fentanyl in collected urine, plasma and by extension other biological samples amenable to the common extraction procedures described for opioid analysis. More importantly, the method's main strength comes from its ability to react with unknown fentanyls to yield products that can be not only detected by EI-GC-MS and HR-LC-MS but can then be used to retrospectively identify an unknown fentanyl.


Asunto(s)
Analgésicos Opioides , Electrones , Cromatografía Liquida/métodos , Analgésicos Opioides/química , Cromatografía de Gases y Espectrometría de Masas , Estudios Retrospectivos , Cloruros , Espectrometría de Masas en Tándem/métodos , Fentanilo/química
11.
Sci Rep ; 11(1): 22489, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795347

RESUMEN

The one-step breakdown and derivatization of a panel of nine fentanyls to yield uniquely tagged products that can be detected by Electron Ionization Gas Chromatography-Mass Spectrometry (EI-GC-MS) is presented. The method involves the treatment of the synthetic opioids with 2,2,2-trichloroethoxycarbonyl chloride (TrocCl) at 60 °C for 3 h in dichloromethane and furnishes two products from one fentanyl molecule that can be used to retrospectively identify the original opioid. Parameters that were studied and fully optimized for the method included temperature, solvent, nature of scavenging base and reaction time. One of the two resulting products from the reaction bears the trichloroethoxycarbonyl (Troc) tag attached to the norfentanyl portion of the original opioid and greatly aids in the opioid detection and identification process. The methodology has been applied to the chemical modification of a panel of nine fentanyls and in all cases the molecular ion peak for the Troc-norfentanyl product bearing the distinctive trichloroethyl isotopic signature can be clearly observed. The method's LLOD was determined to be 10 ng/mL while its LLOQ was found to be 20 ng/mL. This methodology represents the first application of chloroformates in the chemical modification of this class of synthetic opioids that are notoriously inert to common derivatization strategies available for GC-MS analysis.

12.
Sci Rep ; 9(1): 17360, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31758017

RESUMEN

The rapid and efficient difluoromethylation of a panel of eleven bisphenols (BPs) for their enhanced detection and identification by Electron-Ionization Gas Chromatography-Mass Spectrometry (EI-GC-MS) is presented. The derivatization employs the inexpensive, environmentally benign agent diethyl (bromodifluoromethyl) phosphonate (DBDFP) as a difluorocarbene-generating species that converts the BPs into bis-difluoromethylated ethers that can be detected and identified by GC-MS means. Key attributes of the protocol include its extreme rapidity (30 seconds) at ambient temperature, high specificity for BPs amidst other alcohol-containing analytes, and its biphasic nature that allows for its convenient adaptation to the analysis of BPs in organic as well as aqueous matrices. The protocol furnishes stable, novel BP ethers armed with a total of four fluorine atoms for their subsequent analysis by EI-GC-MS. Furthermore, each derivatized bisphenol exhibits unique retention times vastly different from their native counterparts leading to their unequivocal identification. The effectiveness and robustness of the developed methodology was applied to the tagging of the most famous member of this family of compounds, bisphenol-A (BPA), when spiked (at 1 µg.g-1 concentration) in the physically and compositionally complex Nebraska EPA standard soil. The method detection limit (MDL) for the bis-difluoromethylated BPA was determined to be 0.01 µg.mL-1. The bis-difluoromethylated BPA was conveniently detected on the organic layers from the biphasic, derivatized mixtures, highlighting the protocol's practicality and utility in the rapid, qualitative detection of this endocrine disruptor during environmental analysis.

13.
Sci Total Environ ; 683: 175-184, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31146057

RESUMEN

A practical and efficient protocol for the derivatization and detection by GC-EI-MS of isopropyl-, pinacolyl- and cyclohexylmethylphosphonic acids, key diagnostic degradation products of the nerve agents sarin, soman and cyclosarin respectively, in six different types of soil matrices is presented. The method involves the in situ conversion of the phosphonic acids to their respective methyl esters using trimethyloxonium tetrafluoroborate when present in the soils at low levels (10 µg g-1) without any prior extractions or soil preparation. The soils employed in our study were Nebraska EPA soil, Georgia soil, silt, Virginia type A soil, regular sand and Ottawa sand and were chosen for their vast differences in composition and physical features. Appealing attributes of the protocol include its rapidity (t < 30 min), mildness (ambient temperature), and practicality that includes the production of the phosphonic methyl esters that can be easily detected by GC-EI-MS and corroborated with the instrument's internal NIST spectral library or the Organisation for the Prohibition of Chemical Weapons (OPCW) central analytical database (OCAD v.21_2019). The overall efficacy of the protocol was then tested on a soil sample featured in the 44th OPCW PT that our laboratory participated in. After preparing the soil so as to give pinacolyl methylphosphonic acid at a 5 µg g-1 concentration, the acid was successfully methylated and detected by GC-EI-MS. The protocol's performance mirrors that of the universally employed diazomethane protocol but accomplishes this without any of the explosive hazards and time consuming reagent preparation commonly associated with it.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Organofosforados/análisis , Contaminantes del Suelo/análisis , Soman/análogos & derivados , Biomarcadores/análisis , Metilación , Agentes Nerviosos/análisis , Estudios Retrospectivos , Sarín/análisis , Suelo/química , Soman/análisis
14.
Forensic Sci Int ; 288: 159-168, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29753153

RESUMEN

Trimethyloxonium tetrafluoroborate (TMO·BF4) has been used in the simultaneous derivatization of phosphonic and 2-aminoethylsulfonic acids related to nerve agents in different soils for their enhanced detection and identification by electron ionization gas chromatography-mass spectrometry (EI-GC-MS). The panel of acids consisted of five Schedule 2 phosphonic acids (methyl methylphosphonic acid, ethyl methylphosphonic acid, isopropyl methylphosphonic acid, pinacolyl methylphosphonic acid and cyclohexyl methylphosphonic acid) along with two sulfonic acids, N,N-diethyl-2-aminoethylsulfonic acid and N,N-diisopropyl-2-aminoethylsulfonic acid. The acids were converted to their corresponding methyl esters at ambient temperature when present at a 10µgg-1 concentration in three separate soils: Virginia type A soil, Ottawa sand and Nebraska EPA soil. The concentration of the acids reflects values typically encountered during proficiency tests (PTs) administered annually by the Organisation for the Prohibition of Chemical Weapons (OPCW). Derivatization times to yield detectable signals for the methyl ester products for all the acids was found to vary among all three soil samples, however, it was found that generally the most optimal time across all the matrices involved was 3h after the addition of TMO·BF4. Concomitantly, the analysis of the samples was complemented using GC coupled to flame photometric detection (GC-FPD). The inclusion of GC-FPD in the analysis yielded stronger signals for all seven methylated analytes making their detection after merely 3h possible relative to the ones initially obtained with EI-GC-MS. Regarding the three soils employed in our study, a greater methylating efficiency was found in the Virginia type A soil and Ottawa sand yielding results that were significantly larger in magnitude to those found during the same time points for the Nebraska EPA soil sample. Prolonged reaction times (up to 72h) were explored to find the time for the highest yield of methyl ester production were found instead to be deleterious to the process showcasing the importance of the fast yielding nature of the process specifically in situations where time-sensitive analysis is crucial (e.g. OPCW-PT).


Asunto(s)
Boratos/química , Agentes Nerviosos/química , Compuestos Organofosforados/química , Suelo/química , Ácidos Sulfónicos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Metilación , Estructura Molecular , Ácidos Fosforosos/química
15.
Anal Chim Acta ; 933: 134-43, 2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27497006

RESUMEN

The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found to be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (∼10 µg mL(-1)). Due to its insolubility in methylene chloride, TMO·BF4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. The method was demonstrated to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 µg mL(-1) concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. In addition, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. The work described herein represents the first report on the use of TMO·BF4 as a viable, stable and safe agent for the methylation of phosphonic acids and their half esters and within the context of an OPCW Proficiency Test sample analysis.

16.
PLoS One ; 9(9): e108250, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25233364

RESUMEN

The alternate and optimized syntheses of the parent opioid fentanyl and its analogs are described. The routes presented exhibit high-yielding transformations leading to these powerful analgesics after optimization studies were carried out for each synthetic step. The general three-step strategy produced a panel of four fentanyls in excellent yields (73-78%) along with their more commonly encountered hydrochloride and citric acid salts. The following strategy offers the opportunity for the gram-scale, efficient production of this interesting class of opioid alkaloids.


Asunto(s)
Analgésicos Opioides/síntesis química , Fentanilo/análogos & derivados , Fentanilo/síntesis química , Alquilación , Oxidación-Reducción
18.
ACS Appl Mater Interfaces ; 5(16): 8111-9, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23895541

RESUMEN

We report on simple and efficient routes to dope polydicyclopentadiene (PDCPD)-based aerogels and their coatings with high-Z tracer elements. Initially, direct halogenation of PDCPD wet gels and aerogels with elemental iodine or bromine was studied. Although several pathways were identified that allowed doping of PDCPD aerogels by direct addition of bromine or iodine to the unsaturated polymer backbone, they all provided limited control over the amount and uniformity of doping, especially at very low dopant concentrations. Deterministic control over the doping level in polymeric aerogels and aerogel coatings was then achieved by developing a copolymerization approach with iodine and tin containing comonomers. Our results highlight the versatility of the ring-opening metathesis polymerization (ROMP)-based copolymerization approach in terms of functionalization and doping of low density polymeric aerogels and their coatings.


Asunto(s)
Indenos/química , Polímeros/química , Oligoelementos/química , Geles/química , Yoduros/química , Polimerizacion
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA