Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Microsc Microanal ; 25(2): 301-308, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30714566

RESUMEN

Although atom probe tomography (APT) reconstructions do not directly influence the local elemental analysis, any structural inferences from APT volumes demand a reliable reconstruction of the point cloud. Accurate estimation of the reconstruction parameters is crucial to obtain reliable spatial scaling. In the current work, a new automated approach of calibrating atom probe reconstructions is developed using only one correlative projection electron microscopy (EM) image. We employed an algorithm that implements a 2D cross-correlation of microstructural features observed in both the APT reconstructions and the corresponding EM image. We apply this protocol to calibrate reconstructions in a Cu(In,Ga)Se2-based semiconductor and in a Co-based superalloy. This work enables us to couple chemical precision to structural information with relative ease.

2.
Int J Pharm ; : 124305, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38852749

RESUMEN

With an ever-increasing burden of vision loss caused by diseases of the posterior ocular segment, there is an unmet clinical need for non-invasive treatment strategies. Topical drug application using eye drops suffers from low to negligible bioavailability to the posterior segment as a result of static and dynamic defensive ocular barriers to penetration, while invasive delivery systems are expensive to administer and suffer potentially severe complications. As the cornea is the main anatomical barrier to uptake of topically applied drugs from the ocular surface, we present an approach to increase corneal permeability of a corticosteroid, dexamethasone sodium-phosphate (DSP), using a novel penetration enhancing agent (PEA). We synthesised a novel polyacetylene (pAc) polymer and compared its activity to two previously described cell penetrating peptide (CPP) based PEAs, TAT and penetratin, with respect to increasing transcorneal permeability of DSP in a rapid ex-vivo porcine corneal assay over 60 min. The transcorneal apparent permeability coefficients (Papp) for diffusion of pAc, and fluorescein isothiocyanate (FITC) conjugated TAT and penetratin were up to 5 times higher (p < 0.001), when compared to controls. When pAc was used in formulation with DSP, an almost 5-fold significant increase was observed in Papp of DSP across the cornea (p = 0.0130), a significant 6-fold increase with TAT (p = 0.0377), and almost 7-fold mean increase with penetratin (p = 0.9540). Furthermore, we investigated whether the PEAs caused any irreversible damage to the barrier integrity of the corneal epithelium by measuring transepithelial electrical resistance (TEER) and immunostaining of tight junction proteins using zonula occludens-1 (ZO-1) and occludin antibodies. There was no damage or structural toxicity, and the barrier integrity was preserved after PEA application. Finally, an in-vitro cytotoxicity assessment of all PEAs in human retinal pigment epithelium cells (ARPE-19) demonstrated that all PEAs were very well-tolerated, with IC50 values of 64.79 mM for pAc and 1335.45 µM and 87.26 µM for TAT and penetratin, respectively. Our results suggest that this drug delivery technology could potentially be used to achieve a significantly higher intraocular therapeutic bioavailability after topical eye drop administration, than currently afforded.

3.
Drug Deliv ; 28(1): 2044-2050, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34595979

RESUMEN

Ocular chemical injuries (OCIs) commonly cause ocular damage and visual loss and treatment uses topical therapies to facilitate healing and limit complications. However, the impact of chemical injury on corneal barrier function and treatment penetration is unknown. Therefore, the aim of this study was to determine the effect of OCI on drug penetration and absorption. Porcine corneal explants were used to assess histological damage, electrical resistance, and the trans-corneal penetration/corneal adsorption of reference compounds (sodium fluorescein and rhodamine B) and dexamethasone. Corneal explants were injured with either 1 M sulfuric acid, or 1 M sodium hydroxide. Dexamethasone penetration was measured using high-performance liquid chromatography (HPLC) and that of fluorescein and rhodamine using fluorescence. Dexamethasone corneal adsorption was measured using enzyme-linked immunoabsorbant assay (ELISA). Both acid and alkaline injuries reduced trans-corneal electrical resistance. NaOH injury increased hydrophilic fluorescein penetration (NaOH 8.59 ± 1.50E-05 cm.min-1 vs. Hanks' Balanced Salt Solution (HBSS) 1.64 ± 1.01E-06 cm.min-1) with little impact on hydrophobic rhodamine B (1 M NaOH 6.55 ± 2.45E-04 cm.min-1 vs. HBSS 4.60 ± 0.972E-04 cm.min-1) and dexamethasone penetration (1 M NaOH 3.00 ± 0.853E-04 cm.min-1 vs. HBSS 2.69 ± 0.439E-04 cm.min-1). By contrast, H2SO4 decreased trans-corneal penetration of hydrophilic fluorescein (H2SO4 1.16 ± 14.2E-07 cm.min-1) and of hydrophobic dexamethasone (H2SO4 1.88 ± 0.646E-04 cm.min-1) and rhodamine B (H2SO4 4.60 ± 1.42E-05 cm.min-1). Acid and alkaline OCI differentially disrupted the corneal epithelial barrier function. Acid injury reduced penetration of hydrophobic dexamethasone and rhodamine B as well as hydrophilic fluorescein, which may translate clinically into reduced drug penetration after OCI, while alkaline injury increased fluorescein penetration, with minimal effect on dexamethasone and rhodamine B penetration.


Asunto(s)
Córnea/efectos de los fármacos , Dexametasona/farmacocinética , Lesiones Oculares/inducido químicamente , Fluoresceína/farmacocinética , Rodaminas/farmacocinética , Administración Tópica , Animales , Cromatografía Líquida de Alta Presión , Ensayo de Inmunoadsorción Enzimática , Hidróxido de Sodio/efectos adversos , Hidróxido de Sodio/farmacología , Ácidos Sulfúricos/efectos adversos , Ácidos Sulfúricos/farmacología , Porcinos
4.
Nat Rev Chem ; 4(6): 291-310, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37127955

RESUMEN

Helices are the most prevalent secondary structure in biomolecules and play vital roles in their activity. Chemists have been fascinated with mimicking this molecular conformation with synthetic materials. Research has now been devoted to the synthesis and characterization of helical materials, and to understand the design principles behind this molecular architecture. In parallel, work has been done to develop synthetic polymers for biological and medical applications. We now have access to materials with controlled size, molecular conformation, multivalency or functionality. As a result, synthetic polymers are being investigated in areas such as drug and gene delivery, tissue engineering, imaging and sensing, or as polymer therapeutics. Here, we provide a critical view of where these two fields, helical polymers and polymers for biological and medical applications, overlap. We have selected relevant polymer families and examples to illustrate the range of applications that can be targeted and the impact of the helical conformation on the performance. For each family of polymers, we briefly describe how they can be prepared, what helical conformations are observed and what parameters control helicity. We close this Review with an outlook of the challenges ahead, including the characterization of helicity through the process and the identification of biocompatibility.

5.
Sci Rep ; 10(1): 11754, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678110

RESUMEN

Drug delivery by topical application has higher patient acceptance and lower morbidity than intraocular injection, but many ophthalmic treatments are unable to enter the eye or reach the posterior segment after topical application. The first stage towards posterior segment delivery after topical application is ocular surface penetration and existing models are in vivo or use large quantities of tissue. We therefore developed a novel ex vivo model using discs of porcine and human cornea and sclera (5 mm diameter) to assess penetration of a candidate neuroprotective siRNA. siRNA against caspase 2 or control solutions of known penetrance were applied to the corneal epithelial surface and trans-corneal penetration and corneal adsorbance measured at fixed time points. To demonstrate that leakage did not occur, we applied dextran blue, which should not penetrate the intact cornea and did not do so in our model. Fluorescein penetration (0.09%) was less than rhodamine B (6.98%) at 60 min. siCASP2 penetration was 0.01% by 60 min. When the applied siCASP2 was washed off after 2 min, (representing lacrimal drainage) 0.071% penetrated porcine cornea by 60 min and 0.0002% penetrated human cornea and 0.001% penetrated human sclera. Our ex vivo model rapidly and cost-effectively assesses transcorneal penetration of candidate topical therapies, allowing rates of trans-corneal penetration for potential therapies such as siRNA to be evaluated with small quantities of human or animal tissue.


Asunto(s)
Córnea/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Administración Oftálmica , Animales , Caspasa 2/genética , Córnea/metabolismo , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Modelos Animales , Soluciones Oftálmicas , Permeabilidad , ARN Interferente Pequeño/administración & dosificación , Porcinos
6.
J Appl Psychol ; 90(5): 972-9, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16162069

RESUMEN

The reported research examines the moderating effects of role overload on the antecedents and consequences of self-efficacy and personal goal level in a longitudinal study conducted in an industrial selling context. The results indicate that role overload moderates the antecedent effect of perceived organizational resources on self-efficacy beliefs. They also show that role overload moderates the direct effects of both self-efficacy and goal level on performance, such that these relationships are positive when role overload is low but not significant when role overload is high. Further, the results reveal a pattern of moderated mediation, in which goal level mediates the indirect effect of self-efficacy on performance when role overload is low but not when it is high. Implications for theory and managerial practice are discussed.


Asunto(s)
Relaciones Interpersonales , Objetivos Organizacionales , Rol , Autoeficacia , Carga de Trabajo/psicología , Conflicto Psicológico , Conducta Cooperativa , Humanos , Modelos Psicológicos , Motivación , Apoyo Social
7.
PLoS One ; 8(10): e78350, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24205208

RESUMEN

BACKGROUND: Sedentary behaviour has been identified as a distinct risk factor for several health outcomes. Nevertheless, little research has been conducted into the underlying mechanisms driving these observations. This study aimed to investigate the association of objectively measured sedentary time and breaks in sedentary time with markers of chronic low-grade inflammation and adiposity in a population at a high risk of type 2 diabetes mellitus. METHODS: This study reports data from an ongoing diabetes prevention programme conducted in Leicestershire, UK. High risk individuals were recruited from 10 primary care practices. Sedentary time (<25 counts per 15 s) was measured using Actigraph GT3X accelerometers (15 s epochs). A break was considered as any interruption in sedentary time (≥25 counts per 15 s). Biochemical outcomes included interleukin-6 (IL-6), C-reactive protein (CRP), leptin, adiponectin and leptin:adiponectin ratio (LAR). A sensitivity analysis investigated whether results were affected by removing participants with a CRP level >10 mg/L, as this can be indicative of acute inflammation. RESULTS: 558 participants (age = 63.6±7.7 years; male = 64.7%) had complete adipokine and accelerometer data. Following adjustment for various confounders, sedentary time was detrimentally associated with CRP (ß = 0.176±0.057, p = 0.002), IL-6 (ß = 0.242±0.056, p = <0.001), leptin (ß = 0.146±0.043, p = <0.001) and LAR (ß = 0.208±0.052, p = <0.001). Associations were attenuated after further adjustment for moderate-to-vigorous physical activity (MVPA) with only IL-6 (ß = 0.231±0.073, p = 0.002) remaining significant; this result was unaffected after further adjustment for body mass index and glycosylated haemoglobin (HbA1c). Similarly, breaks in sedentary time were significantly inversely associated with IL-6 (ß = -0.094±0.047, p = 0.045) and leptin (ß = -0.075±0.037, p = 0.039); however, these associations were attenuated after adjustment for accelerometer derived variables. Excluding individuals with a CRP level >10 mg/L consistently attenuated the significant associations across all markers of inflammation. CONCLUSION: These novel findings from a high risk population recruited through primary care suggest that sedentary behaviour may influence markers associated with inflammation, independent of MVPA, glycaemia and adiposity.


Asunto(s)
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Inflamación/metabolismo , Inflamación/patología , Actividad Motora/fisiología , Adiponectina/metabolismo , Adiposidad/fisiología , Índice de Masa Corporal , Proteína C-Reactiva/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Interleucina-6/metabolismo , Leptina/metabolismo , Masculino , Persona de Mediana Edad , Factores de Riesgo , Conducta Sedentaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA